-
我国城市化进程发展迅速,市政排水管网设施仍相对落后,雨污合流管道占主体部分,这让污水处理厂面临着高无机悬浮物进水冲击的问题。在雨季,地面沙土、空气扬尘都会随着雨水冲刷进入市政管网 [1-3],温度较高的冬天或初春温度升高后的雪融也会形成地表径流,造成城市污水携带大量悬浮物进入污水处理厂 [4]。另一方面,我国许多污水处理厂为保证曝气池内充足的碳源,取消了初沉池的设置[5-6],这使得大量悬浮物(SS)在曝气池内大量积累,导致活性污泥MLVSS/MLSS的比值大幅度下降,一定程度上降低了污水处理厂的处理效果,也增加了设备运行维护的难度[7-8]。
微压内循环生物反应器(micro-pressure swirl reactor,MPSR)是一种新型多生物相反应器,反应器顶部大部分密闭,空气从反应器底部一侧进入,反应器内部活性污泥混合液成循环流态,外围流速高,内圈流速低,增加了气泡的行程,提高了氧的传质效率[9];反应器内部能够形成不同的溶解氧(DO)分区,实现了同一空间不同功能菌群共同反应,达到了同步去除COD、氮、磷的效果[10],在目前实验室阶段研究发现[11-13] MPSR对碳、氮、磷的去除能力,尤其是反硝化能力强于SBR,在超长污泥龄(50、70、90 d)下仍然有较高的脱氮除磷效果,在污泥龄为90 d阶段,系统脱氮率在80%左右,除磷率在90%以上;在对MPSR进行单周期瞬时有机负荷冲击实验中发现,可以通过调控曝气量有效应对冲击,保证污染物去除效果;有研究[14]表明,当有机负荷从0.29 g·(g·d)−1增加到1.68 g·(g·d)−1后,MPSR对于COD的去除效率平均比SBR高出10~20%。
在实验室研究的基础上,本研究考察了中试规模MPSR工艺对长春某新区城市污水处理效果,探讨了高悬浮物对MPSR工艺中污染物的去除效果和污泥特性的影响,分析了反应器中微生物菌群结构的变化,以期为该工艺在城市污水的实际应用提供参考。
高悬浮物进水对中试规模微压内循环生物反应器处理效果的影响
Influence of high suspended solids influent on the treatment effect of the pilot-scale micro-pressure swirl reactor
-
摘要: 采用中试规模微压内循环生物反应器(MPSR)处理某北方城市新区污水处理厂沉砂池出水,考察了高悬浮物进水条件下反应器污染物处理效果及污染物的去除特性,利用高通量测序对微生物群落结构进行分析。MPSR 经450 d的运行结果表明,受春季冰雪融化和夏季降雨影响,反应器进水中SS质量浓度平均值在1—5月提高至约800 mg·L−1,在5—8月达到约2 700 mg·L−1,运用SPSS对进水SS与COD进行相关性分析,二者为正相关,皮尔逊相关系数为0.682。高悬浮物进水使得系统内MLSS质量浓度增加至12 000 mg·L-1,而MLVSS质量浓度基本保持在3 000~5 000 mg·L−1,SVI下降至50 mL·g−1。在不同进水负荷条件下,MPSR出水COD、TN、TP质量浓度始终保持在26、14、0.28 mg·L−1以下,达到《城镇污水处理厂污染物排放标准》一级A排放标准。高通量测序结果表明MPSR内微生物结构丰富,系统内好氧反硝化菌Thermomonas、Terrimonas、反硝化除磷菌Dechloromonas等多重功能微生物共存。MPSR内丰富的微生物结构使其在高悬浮物冲击下仍可以保持稳定的处理效果。Abstract: A pilot-scale micro-pressure swirl teactor (MPSR) was used to treat the effluent from the grit chamber of a sewage treatment plant in a new district of a northern city in China, the reactor pollutant treatment effects and pollutant removal characteristics at high suspended solids influent were inspected. The high-throughput sequencing was used to determine the microbial community structure in MPSR. The 450-day operation results showed that the average SS concentration in the influent of MPSR increased to about 800 mg·L−1 from January to May and reached about 2 700 mg·L−1 from May to August due to the influences of the melting of snow and ice in spring and the summer rainfall. Based on the SPSS correlation analysis, a positive correlation occurred between water SS and COD with the pearson correlation of 0.682. The MLSS concentration in the system increased to 12 000 mg·L−1 due to high suspended solids inflow, while the MLVSS concentration basically maintained between 3 000 mg·L−1 and 5 000 mg·L−1, and SVI value decreased to 50 mL·g−1. At different influent loadings, COD, TN and TP concentrations in the effluent of MPSR were always below 26, 14 and 0.28 mg·L−1, respectively, which met the first-level A emission standards of “urban sewage treatment plant pollutant emissions standard”. The results of high-throughput sequencing showed that the microbial structure in MPSR was abundant, and multiple functional microorganisms such as aerobic denitrifying bacteria Thermomonas, Terrimonas, and denitrifying phosphorus removing bacteria Dechloromonas coexisted in the system. The rich microbial structure in MPSR enables it to maintain a stable treatment effect under the impact of high suspended solids .
-
-
[1] 刘志长. 合流制排水管道沉积物的沉淀状况及控制技术研究[D]. 长沙: 湖南大学2011. [2] 熊磊, 边德军, 吴忌, 等. 长春市新区污水水质及水量变化规律分析[J]. 环境工程, 2017, 35(1): 36-40. [3] 侯巧玲, 张鸿, 洋王, 等. 某高新技术工业园区污水厂的设计与运行[J]. 给水排水, 2014, 30(22): 115-118. [4] LI L Q, SHAN B Q, YIN C Q. Stormwater runoff pollution loads from an urban catchment with rainy climate in China[J]. Frontiers of Environmental Science & Engineering, 2012, 6(5): 672-677. [5] ALAGHA O, ALLAZEM A, BUKHARI A A, et al. Suitability of SBR for wastewater treatment and reuse: Pilot-scale reactor operated in different anoxic conditions[J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1617. doi: 10.3390/ijerph17051617 [6] XIE E, XU X Y, LUO G Y. Study on a novel reactor of sludge process reduction for domestic sewage treatment[J]. Environmental Technology, 2013, 34: 9-12. [7] 邓仁健, 张金松, 杨靖波, 等. 高无机悬浮物进水对城市污水厂处理效果的冲击影响及机理研究[J]. 环境科学学报, 2013, 33(6): 1605-1610. doi: 10.13671/j.hjkxxb.2013.06.018 [8] 张自杰. 排水工程: 下册[M]. 4版. 北京: 中国建筑工业出版社, 2000. [9] 边德军. 微压内循环多生物相反应器研制及性能研究[D]. 长春: 东北师范大学, 2015. [10] 万立国, 边德军, 卢文喜, 等. 微压气升循环流反应器与完全混合式反应器运行效果及微生物种群结构比较[J]. 环境污染与防治, 2018, 40(1): 11-14. [11] 边德军, 王喜超, 艾胜书, 等. 微压内循环反应器与序批式反应器的污染物去除及污泥特性比较[J]. 环境污染与防治, 2020, 42(11): 1315-1318. [12] 王帆, 么兴荣, 刘松林, 等. 有机负荷冲击对微压反应器的影响及调控策略[J]. 中国环境科学, 2021, 41(8): 3667-3675. doi: 10.3969/j.issn.1000-6923.2021.08.023 [13] 边德军, 赵乐欣, 王宁, 等. 超长污泥龄对MPR工艺脱氮除磷效果的影响[J]. 环境工程学报, 2021, 15(5): 1735-1743. doi: 10.12030/j.cjee.202010091 [14] BIAN D J, ZHOU D D, HUO M X, et al. Improving oxygen dissolution and distribution in a bioreactor with enhanced simultaneous COD and nitrogen removal by simply introducing micro-pressure and swirl[J]. Applied Microbiology & Biotechnology, 2015, 99(20): 8741-8749. [15] HUANG X, DONG W Y, WANG H J, et al. Biological nutrient removal and molecular biological characteristics in an anaerobic-multistage anaerobic/oxic (A-MAO) process to treat municipal wastewater[J]. Bioresource Technology, 2017, 241: 969-978. doi: 10.1016/j.biortech.2017.05.161 [16] 吉芳英, 周卫威, 裴玲, 等. 细微泥沙对活性污泥系统的影响及其恢复特征[J]. 环境科学研究, 2015, 28(2): 326-332. doi: 10.13198/j.issn.1001-6929.2015.02.22 [17] 苏高强, 彭永臻. 基于ORP的控制策略在废水生物处理中的应用[J]. 工业水处理, 2011, 31(8): 11-15. doi: 10.3969/j.issn.1005-829X.2011.08.003 [18] 高景峰, 彭永臻, 王淑莹, 等. 以DO、ORP、pH控制SBR法的脱氮过程[J]. 中国给水排水, 2001(4): 6-11. doi: 10.3321/j.issn:1000-4602.2001.04.002 [19] 王涛, 徐跃飞, 陈贵生, 等. ORP用于优化改良型Carrousel氧化沟脱氮的研究[J]. 中国给水排水, 2012, 28(21): 16-19. doi: 10.3969/j.issn.1000-4602.2012.21.005 [20] ZHA X, MA J, LU X W, et al. Use of a low-cost and energy-efficient device for treating low-strength wastewater at low temperatures focusing on nitrogen removal and microbial community[J]. Science of the Total Environment, 2020, 722: 137916. doi: 10.1016/j.scitotenv.2020.137916 [21] KUBA T, SMDLDERS G, VANLOOSDRECHT M C M, et al. Biological phosphorus removal from wastewater by anaerobic-anoxic sequencing batch reactor[J]. Water Science and Technology, 1993, 27(56): 241-252. [22] HU M, WANG X H, WEN X H, XIA Y. Microbial community structures in different wastewater treatment plants as revealed by 454-pyrosequencing analysis[J]. Bioresource Technology, 2012, 117: 72-79. doi: 10.1016/j.biortech.2012.04.061 [23] SHI X Q, NG K K, LI X R, et al. Investigation of intertidal wetland sediment as a novel inoculation source for anaerobic saline wastewater treatment[J]. Environmental Science & Technology, 2015, 49(10): 6231-6239. [24] ZHANG Y T, DING K, YRJÄLÄ K, et al. Introduction of broadleaf species into monospecific cunninghamia lanceolata plantations changed the soil Acidobacteria subgroups composition and nitrogen-cycling gene abundances[J]. Plant and Soil, 2021, 467(12): 1-18. [25] 王光华, 刘俊杰, 于镇华, 等. 土壤酸杆菌门细菌生态学研究进展[J]. 生物技术通报, 2016, 32(02): 14-20. [26] MIURA Y, WATANABE Y, OKABE S. Significance of chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater[J]. Environmental Science & Technology, 2007, 41(22): 7787-7794. [27] SENGUN I Y, KARABIYIKLI S. Importance of acetic acid bacteria in food industry[J]. Food Control, 2011, 22(5): 647-656. doi: 10.1016/j.foodcont.2010.11.008 [28] FU C, YUE X D, SHI X Q, et al. Membrane fouling between a membrane bioreactor and a moving bed membrane bioreactor: Effects of solids retention time[J]. Chemical Engineering Journal, 2017: 397-408. [29] CHEN M X, CHEN Y W, DONG S Y, et al. Mixed nitrifying bacteria culture under different temperature dropping strategies: Nitrification performance, activity, and community[J]. Chemosphere, 2018, 195: 800-809. doi: 10.1016/j.chemosphere.2017.12.129 [30] XING W, LI J, LI D, et al. Stable-isotope probing reveals the activity and function of autotrophic and heterotrophic denitrifiers in nitrate removal from organic-limited wastewater[J]. Environmental Science & Technology, 2018, 52(14): 7867-7875. [31] XIE C H, YOLATA A. Reclassification of [Flavobacterium] ferrugineum as Terrimonas ferruginea gen. nov. , comb. nov., and description of Terrimonas lutea sp. nov. , isolated from soil[J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(5): 1117-1121. doi: 10.1099/ijs.0.64115-0 [32] MERGAERT J, CNOCLAERT M C, SWINGS J. Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov. , two mesophilic species isolated from a denitrification reactor with poly(epsilon-caprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas[J]. International Journal of Systematic and Evolutionary Microbiology, 2003, 53(6): 1961-1966. doi: 10.1099/ijs.0.02684-0 [33] TERASHIMA M, YAMA A, SATO M, et al. Culture-dependent and -independent identification of polyphosphate-accumulating Dechloromonas spp. predominating in a full-scale oxidation ditch wastewater treatment plant[J]. Microbes and Environments, 2016, 31(4).