-
我国北方大部分地区冬季水源呈现低温低浊的特征,这为给水处理工程带来很不利的影响。由于原水温度低,浊度低,使得混凝过程具有混凝剂水解缓慢、粘滞剪切力大、亲水性强、碰撞和聚集效率低等特点,且混凝形成的絮体细小,不易下沉,难以沉淀,严重影响常规混凝沉淀效果[1-3]。目前,针对低温低浊水处理的技术很多,典型的处理技术有强化混凝、微絮凝接触过滤、气浮、活性砂絮凝、高效絮凝沉淀池等[4-7]。其中,高效絮凝沉淀池因具备出水水质好、适应性强、运行负荷高、占地面积小等优点,自引进以来被国内各类水厂广泛采用[8-14]。该工艺集絮凝、沉淀和污泥浓缩于一体,能够将浓缩污泥回流至絮凝过程,提高颗粒物浓度,进而达到强化絮凝效果的目的[15-16]。高效絮凝沉淀池虽然对低温低浊水有良好的处理效果,但由于混凝剂投加量的增加可能导致出水重金属离子 (如余铝) 超标的问题[17]。因此,仅采用高效絮凝沉淀池难以取得理想的净化效果。
翻板滤池是一种新兴的气水反冲洗滤池工艺,因反冲洗排水时,排水阀在0°~90°内翻转而得名。翻板滤池具有滤料可多样化选择、流失少、过滤周期长和出水水质好等优点,因而被广泛应用于水厂改造[18-21]。翻板滤池可根据进出水要求选择适宜的滤料,能够弥补高效絮凝沉淀池出水重金属离子超标的缺点,保证出水重金属离子稳定达标。因此,采用高效絮凝沉淀池与翻板滤池组合工艺,能够适应原水水质的变化,克服低温低浊水处理的难题,满足出厂水质的要求。
宁夏长城水厂源水来自黄河,源水经调蓄水库后,浊度较低。取水地冬季气温低至0 ℃以下,属于典型的低温低浊水。本研究以长城水厂为研究对象,拟以“高效絮凝沉淀池与翻板滤池”组合工艺为研究基础,通过对药剂投加量、污泥回流和翻板滤池反冲洗等参数的调节,以实现对组合工艺的优化,为低温低浊水处理工程提供设计经验和工程案例参考。
基于高效絮凝沉淀池与翻板滤池组合工艺的工程案例
Engineering case based on the combination process of high-efficiency flocculation sedimentation tank and shutter filter
-
摘要: 以银川市某水厂为例,评估高效絮凝沉淀池与翻板滤池组合工艺的工程应用效果。结果表明,高效絮凝沉淀池与翻板滤池组合工艺能够适应较大水质波动,具有一定抗冲击负荷能力。其浊度去除率和高锰酸盐指数 (以CODMn计) 去除率较高,出水水质满足《生活饮用水卫生标准》 (GB/T5749-2006) 。通过调整排泥量和污泥回流比,能够有效解决沉淀池泥位超标问题。根据翻板滤池的过滤负荷和滤水阀门的开度调整反冲洗周期,能够提高过滤效率,节约电耗。少量无烟煤滤料的流失对翻板滤池出水浊度无影响。本研究结果可为低温低浊水处理工程提供设计经验和工程案例参考。Abstract: Taking the Great Wall Water Treatment Plant in Yinchuan city, Ningxia as an example, the application effect of high efficiency flocculation sedimentation tank combined with shutter filter was evaluated. The results showed that the combined process could adapt to a large fluctuation of influent quality and had a strong anti-shock loading capability. The removal rates of turbidity and permanganate index (CODMn) were high. The effluent quality could meet standards for drinking water quality (GB5749-2006). Adjusting the sludge mass and sludge reflux ratio had been proved to be an effective solution to sludge level excessive in the sedimentation tank. It can be adjusted to the backwash cycle according to filtration load of the shutter filter and opening aperture of the filtered water valve, which made the filtration efficiency improve significantly and power consumption reduce. A small anthracite loss had little effect on effluent turbidity of the shutter filter.
-
表 1 2019~2021年原水主要指标
Table 1. Main indicators of raw water from 2019 to 2021
考察项目 指标范围 考察项目 指标范围 pH 7.9~8.4 总磷(TP) 0.01~0.08 mg·L−1 水温 −1.5~24.0 ℃ 总氮(TN) 0.64~3.90 mg·L−1 浊度 1.08~64.00 NTU 铁(Fe3+) 0~0.38 mg·L−1 高锰酸盐指数(CODMn) 1.03~3.93 mg·L−1 锰(Mn2+) 0~0.06 mg·L−1 氨氮(NH4+−N) 0.02~0.98 mg·L−1 表 2 高效絮凝沉淀池参数
Table 2. Parameters of high-efficiency flocculation sedimentation tank
名称 参数 规格 混合反应区 单格平面尺寸 4.8 m×4.8 m 反应停留时间 2 min 有效水深 4.8 m 絮凝反应区 单格平面尺寸 8.8 m×7.0 m 有效水深 6.8 m 污泥浓缩区 单格平面尺寸 15.0 m×15.0 m 有效水深 6.8 m 斜管分离区 单格平面尺寸 15.0 m×11.14 m 液面负荷 21.3 m3·(m2·h)−1(5.9 mm·s−1) 表 3 翻板滤池参数
Table 3. Parameters of shutter filter
参数 规格 参数 规格 单格平面尺寸 10.0×8.0 m 无烟煤滤料厚度 700 mm 管廊平面尺寸 59.7×14.0 m 滤床高度 1.5 m 单格过滤面积 80.0 m2 滤料上水深 2.3 m 设计滤速 7.8 m·h−1 反冲洗总时长 21~25 min 强制滤速 9.1 m·h−1 反冲洗气冲时长 300 s 单格设计滤水量 600 m3 反冲洗气水混冲液位 0.80 m 单格强制滤水量 700 m3 反冲洗水冲液位 1.65 m 承托层厚度 0.45 mm 反冲洗滤料沉降时长 100 s 石英砂滤料厚度 800 mm 反冲洗回水排污时长 80 s -
[1] 苏晓明. 低温低浊水处理工艺的改进与设计[J]. 节能与环保, 2019(3): 74-75. [2] 洪云, 徐慧. 不同混凝剂处理低温低浊水[J]. 环境工程学报, 2015, 9(9): 4421-4426. doi: 10.12030/j.cjee.20150952 [3] 高雅, 毕哲, 王东升, 等. 优化混凝处理低温低浊黄河水及对余铝的控制[J]. 环境工程学报, 2013, 7(10): 3737-3742. [4] 包相闱, 蔡一润. 气浮工艺在低温、低浊原水处理中的应用——以嘉善千岛湖水厂为例[J]. 科学技术创新, 2022(13): 129-132. [5] 贾伯林, 卢建波, 肖峰, 等. 重介质混凝沉淀工艺工程应用中的难点及解决方案[J]. 环境工程学报, 2018, 12(12): 3540-3546. [6] 王连旺, 周璠, 孙涛. 微絮凝时间对直接过滤处理低温低浊微污染水的影响研究[J]. 供水技术, 2014, 8(2): 1-4. [7] 闫晓涛, 席春晓, 李杰, 等. 响应面法优化微絮凝法处理黄河兰州段低温低浊水[J]. 干旱区资源与环境, 2019, 33(4): 145-15. [8] 肖海水. 高硬度废水处理中高密度澄清池的改进[J]. 广东化工, 2018, 45(6): 177-178. [9] 蒋富海, 安鹏. 高密度澄清池-滤布滤池在污水深度处理中的应用及控制[J]. 给水排水, 2017, 53(4): 24-28. [10] 李国炜. 重庆市悦来水厂高密度澄清池设计优化[J]. 中国给水排水, 2016, 32(24): 78-82. [11] 郑贤明. 福建省某城镇污水处理厂升级改造工程设计及运行实例[J]. 广东化工, 2021, 48(21): 143-145. doi: 10.3969/j.issn.1007-1865.2021.21.061 [12] 何文章. 高密度澄清池在化工污水处理厂提标改造工程中的应用[J]. 工业用水与废水, 2020, 51(6): 73-76. doi: 10.3969/j.issn.1009-2455.2020.06.016 [13] 王红萍, 黄种买, 张运华, 等. 高密度澄清池与V型滤池在钢铁废水处理中的应用[J]. 环境科学与技术, 2013, 36(8): 91-96. doi: 10.3969/j.issn.1003-6504.2013.08.019 [14] 周强. 高密度沉淀池用于处理低温低浊水库水的技术改造分析[J]. 科技创新与应用, 2019(20): 114-115+118. [15] 王涛. 浅谈高效絮凝沉淀池工艺原理及运行管理[J]. 工业C, 2015, 59: 71,73. [16] WEI H, GAO B, REN J, et al. Coagulation/flocculation in dewatering of sludge: a review[J]. Water Research, 2018, 143: 608-631. doi: 10.1016/j.watres.2018.07.029 [17] MA M, GU J, LI Y, et al. Residual aluminum control for source water with high risk of overproof coagulant residue: a novel application of principal component analysis[J]. Journal of Environmental Chemical Engineering, 2017, 5(3): 2605-2610. doi: 10.1016/j.jece.2017.05.008 [18] 宋艳. 翻板滤池设计[J]. 科技创新与应用, 2020(16): 88-89. [19] 杨自雄. 翻板滤池在传统虹吸滤池改造中的应用[J]. 中国标准化, 2019(22): 139-140. [20] 扶咏梅, 刘盼, 宋忠贤, 等. 气水反冲翻板滤池在中小水厂升级改造中的设计和应用[C]. 环境工程2019年全国学术年会论文集(下册), 2019: 304-307. [21] 廉鹏. 反向翻板滤池在某净水厂改扩建工程中的应用[J]. 中国给水排水, 2016, 32(24): 87-89. [22] 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准: GB 5749-2006[S]. 北京: 中国标准出版社. 2006. [23] 王坪, 王涛, 白文轩. 高效絮凝沉淀池工艺改造及效果分析[J]. 中国科技成果, 2018, 19(18): 31-34. doi: 10.3772/j.issn.1009-5659.2018.18.013 [24] 中华人民共和国国家卫生健康委员会, 中国国家标准化管理委员会. 生活饮用水卫生标准: GB 5749-2022[S]. 北京: 中国标准出版社. 2022.