-
河流具有饮用水供应、纳污、灌溉、航运等诸多功能,在区域可持续发展中发挥着重要作用[1]。为有效识别人类活动、并评估城市化进程[2-5]对河流生态系统造成的影响,诊断河流健康现状,开展河流管理与保护工作,对城市河流开展生态健康评价十分必要。生物群落具有综合反映生态系统物理、化学和生物影响的能力[6],其生物指标被广泛应用于对生态系统健康状况的评估。KARR[7]提出了一种基于鱼类的生物完整性指数 (Index of biotic integrity, IBI) 评估河流健康状况的方法。此后,IBI评价法在对河流[8]、湖泊[9]、湿地[10]和水库[11]等系统的生态健康评价中得到广泛应用。细菌作为生态系统中的重要分解者,具有分布广、繁殖快等特点[12]。在受人类活动影响较大的河流中,虽然细菌群落结构发生改变,但生物多样性未明显降低[13-14],仍对环境变化很敏感[15]。因此,细菌具有指示高度损伤的城市河流健康状况的潜力。
目前,已有研究者使用细菌生物完整性指数 (Bacteria-Index of biotic integrity, Ba-IBI) 指标体系对河流[16]、湖泊[12]、湿地[10]和水库[11]等生态状况进行了评价,结果表明细菌具有反映生态系统健康状况的能力。现有研究大多采用底泥细菌构建评价体系,但由于目前城市河段的河底衬砌等工程措施,造成了河流底泥生境特征的同质化,进而导致底泥细菌群落的同质性[17],因此,底泥细菌在城市河流健康评价中的作用可能有限。浮游细菌是生物地球化学过程的重要参与者[18],其群落结构与环境因素有密切联系[19]。黄艺等[12]和苏瑶等[20]构建了基于浮游细菌的生物完整性指数,成功应用在对滇池流域和城市河流的健康评价中。
深圳河流域受到居民生活、工业生产、交通运输等人类活动的影响,存在氮磷超标的问题,生态系统的完整性遭到了破坏。以深圳市深圳河流域内的3条河流为研究对象,分析各河流的细菌群落结构与水质指标间的关系,通过构建基于浮游细菌的生物完整性指数,探讨Ba-IBI评价体系在受人类活动影响较大的城市河流区域的适用情况,并评估其在城市河流生态健康评价中应用的可行性,以期为城市河流治理工作提供参考。
基于浮游细菌生物完整性指数的城市河流健康评价:以深圳河流域为例
Urban river health assessment based on biotic integrity bacterioplankton-index of biotic integrity : A case study of Shenzhen River Basin
-
摘要: 河流中的细菌是生态系统中物质循环的重要参与者,能反映河流健康状况,其群落生物指标具有评估城市河流生态状况的潜力。通过调查深圳河流域内深圳河、布吉河和福田河3条河流中的浮游细菌群落,构建了生物完整性指数 (Ba-IBI) ,评估了该流域的健康状况。基于河水浮游细菌的Illumina高通量测序结果,通过差异性检验、箱线图筛选和相关性分析方法从163个候选指标中筛选出变形菌门、放线菌门和微丝藻菌目相对丰度及门水平Simpson多样性指数作为核心指标,构建Ba-IBI评价体系。结果表明,深圳河流域内的20个位点中处于健康状态、亚健康状态、一般状态和较差状态的位点数分别为7个、4个、5个和4个。其中,深圳河处于一般和较差状态的点位比例高达85.7%;健康状况从上游到下游逐渐恶化;整体健康状况较差。布吉河和福田河健康状况相对较好,处于亚健康状态。各采样点Ba-IBI得分与水质状况的相关性较高 (R=0.77,P<0.01) ,表明Ba-IBI能有效评价城市河流的健康状况。本研究结果可为深圳市河流的修复和管理工作提供参考。Abstract: Anthropic impacts on urban rivers induced the macrobiotic species disappearance and the biodiversity losses, which reduced the accuracy of bioassessment.Bacteria are important decomposers in the ecosystem material cycle and have the potential to indicate the health status of rivers. The development of biological indicators based on bacterial community for assessing aquatic ecological status is urgently needed. In this study, bacterioplankton-index of biotic integrity (Ba-IBI) was constructed to evaluate the status of three urban rivers in Shenzhen River Basin. Based on the Illumina high-throughput sequencing results of planktonic bacteria, the core indicators were identified by difference examination, boxplot screening and correlation analysis. Among the 163 candidate indicators, the relative abundance of Proteobacteria, Actinomycetes, Microfilariae and Simpson index at the phylum level were regarded as the core indicators to develop the Ba-IBI. The results showed that 7, 4, 5 and 4 of the 20 sites in the Shenzhen River basin were in healthy state, sub-healthy state, general state and poor state, respectively. The Shenzhen River was in poor states, with 85.7% of the points in the general or poor states, and the health status gradually deteriorated from the upstream to the downstream. Buji River and Futian River were in sub-health states. There was a high correlation between Ba-IBI score and water quality (R=0.77, P<0.01) suggesting that Ba-IBI could effectively evaluate the health states of urban rivers. This study can provide a reference for the restoration and management of rivers in Shenzhen.
-
表 1 各采样点主要水质参数及综合得分
Table 1. Main water quality parameters and comprehensive scores of each sampling site
编号 T
/ ℃pH DO
/(mg·L−1)ORP
/mVCODCr
/(mg·L−1)TP
/(mg·L−1)TN
/(mg·L−1)NH3-N
/(mg·L−1)综合
水质得分SZ1 32.3±0.2 6.82±0.19 7.06±0.12 208.0±5.2 11.50±0.62 0.23±0.08 8.77±0.22 0.30±0.03 15 SZ2 31.3±0.2 6.85±0.13 5.23±0.09 103.9±3.8 20.28±1.82 0.63±0.10 5.32±0.18 0.97±0.08 9 SZ3 31.0±0.3 6.90±0.21 4.82±0.17 121.1±6.2 20.84±1.15 0.49±0.04 7.35±0.13 0.80±0.12 8 SZ4 31.8±0.1 6.97±0.23 3.49±0.20 130.6±2.0 24.77±1.63 0.45±0.07 7.51±0.24 0.97±0.04 8 SZ5 31.8±0.2 7.03±0.16 3.56±0.14 125.6±8.5 18.51±0.55 0.39±0.04 7.48±0.23 1.20±0.17 9 SZ6 31.2±0.1 7.40±0.22 5.25±0.07 144.9±5.6 28.66±0.90 0.36±0.05 4.24±0.25 1.16±0.07 8 SZ7 30.3±0.2 7.59±0.29 6.47±0.26 162.3±9.5 24.68±1.42 0.38±0.02 3.07±0.18 0.63±0.09 11 BJ1 21.0±0.2 7.63±0.11 8.29±0.13 213.7±10.2 35.07±0.80 0.05±0.02 7.57±0.21 0.22±0.05 14 BJ2 21.9±0.3 7.41±0.15 8.13±0.15 194.9±6.8 12.63±0.75 0.41±0.03 6.67±0.17 0.30±0.03 14 BJ3 21.5±0.1 7.49±0.16 8.61±0.20 204.3±4.3 15.67±1.34 0.44±0.07 7.57±0.19 0.20±0.05 13 BJ4 20.4±0.3 7.42±0.18 8.54±0.09 220.6±7.4 19.90±1.65 0.41±0.09 6.27±0.13 0.17±0.08 13 FT1 25.1±0.3 6.87±0.21 7.04±0.11 252.6±7.6 14.60±0.74 1.16±0.07 9.87±0.30 0.34±0.04 13 FT2 24.0±0.1 7.26±0.13 8.07±0.13 226.6±5.1 15.33±1.39 1.22±0.11 9.87±0.14 0.72±0.05 12 FT3 22.5±0.1 7.29±0.34 7.46±0.19 208.5±9.3 14.37±0.97 0.25±0.03 9.43±0.18 0.45±0.09 15 BJ1s 26.9±0.3 7.62±0.23 8.32±0.14 137.1±3.5 17.25±1.20 0.38±0.05 8.63±0.20 0.37±0.06 14 BJ2s 27.3±0.2 6.90±0.17 7.32±0.16 145.4±10.4 18.00±0.56 0.36±0.06 9.19±0.15 0.92±0.06 12 BJ3s 27.2±0.2 7.09±0.15 7.89±0.10 159.3±5.1 11.85±0.33 0.88±0.10 8.55±0.30 0.37±0.04 14 BJ4s 27.5±0.3 7.32±0.18 7.35±0.17 269.0±8.3 14.80±1.15 0.81±0.07 8.75±0.11 0.52±0.03 12 FT1s 28.1±0.1 7.18±0.16 7.95±0.13 297.5±8.8 9.40±0.47 0.51±0.03 8.34±0.17 ND 15 FT2s 29.0±0.1 7.43±0.21 7.87±0.11 273.4±4.7 9.55±0.27 0.50±0.06 9.32±0.25 ND 15 注:“s”表示在该点位的第二次取样;“ND”表示水质结果低于检测限。 表 2 核心指标与水质参数的Pearson相关系数
Table 2. The Pearson correlation coefficient between the core metrics scores and the water quality parameters
水质指标 变形菌门
相对丰度放线菌门
相对丰度微丝藻菌目
相对丰度门水平Simpson
多样性指数T −0.16 0.56** 0.52* −0.14 pH −0.14 −0.08 0.11 −0.38 DO 0.3 −0.80** −0.64** −0.22 ORP 0.29 −0.53* −0.43 −0.25 COD −0.52* 0.51* 0.51* 0.15 TP −0.09 −0.19 −0.14 0.4 TN 0.69** −0.55* −0.64** 0.05 NH3-N −0.47* 0.74** 0.66** 0.39 注:*表示P<0.05,**表示P<0.01。 -
[1] BEST J. Anthropogenic stresses on the world’s big rivers[J]. Nature Geoscience, 2019, 12(1): 7-21. doi: 10.1038/s41561-018-0262-x [2] CHUNG M G, FRANK K A, POKHREL Y, et al. Natural infrastructure in sustaining global urban freshwater ecosystem services[J]. Nature Sustainability, 2021, 4(12): 1068-1075. doi: 10.1038/s41893-021-00786-4 [3] MCDONALD R I, WEBER K F, PADOWSKI J, et al. Estimating watershed degradation over the last century and its impact on water-treatment costs for the world’s large cities[J]. Proceedings of the National Academy of Sciences, 2016, 113(32): 9117-9122. doi: 10.1073/pnas.1605354113 [4] MICHALAK A M. Study role of climate change in extreme threats to water quality[J]. Nature, 2016, 535(7612): 349-350. doi: 10.1038/535349a [5] PALMER M A. Beyond infrastructure[J]. Nature, 2010, 467(7315): 534-535. doi: 10.1038/467534a [6] DUDLEY J L. Restoring Life in Running Waters: Better Biological Monitoring[J]. BioScience, 1999, 49(10): 827. doi: 10.2307/1313575 [7] KARR J R. Assessment of Biotic Integrity Using Fish Communities[J]. Fisheries, 1981, 6(6): 21-27. doi: 10.1577/1548-8446(1981)006<0021:AOBIUF>2.0.CO;2 [8] WU J, MAO R, LI M, et al. Assessment of aquatic ecological health based on determination of biological community variability of fish and macroinvertebrates in the Weihe River Basin, China[J]. Journal of Environmental Management, 2020, 267: 110651. doi: 10.1016/j.jenvman.2020.110651 [9] WU Z, KONG M, CAI Y, et al. Index of biotic integrity based on phytoplankton and water quality index: Do they have a similar pattern on water quality assessment? A study of rivers in Lake Taihu Basin, China[J]. Science of the Total Environment, 2019, 658: 395-404. doi: 10.1016/j.scitotenv.2018.12.216 [10] NIU L, ZOU G, GUO Y, et al. Eutrophication dangers the ecological status of coastal wetlands: A quantitative assessment by composite microbial index of biotic integrity[J]. Science of the Total Environment, 2022, 816: 151620. doi: 10.1016/j.scitotenv.2021.151620 [11] LI Y, YANG N, QIAN B, et al. Development of a bacteria-based index of biotic integrity (Ba-IBI) for assessing ecological health of the Three Gorges Reservoir in different operation periods[J]. Science of the Total Environment, 2018, 640-641: 255-263. doi: 10.1016/j.scitotenv.2018.05.291 [12] 黄艺, 舒中亚. 基于浮游细菌生物完整性指数的河流生态系统健康评价——以滇池流域为例[J]. 环境科学, 2013, 34(08): 3010-3018. doi: 10.13227/j.hjkx.2013.08.041 [13] VENTER O, SANDERSON E W, MAGRACH A, et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation[J]. Nature Communications, 2016, 7(1): 12558. doi: 10.1038/ncomms12558 [14] LEAR G, DOPHEIDE A, ANCION P, et al. A comparison of bacterial, ciliate and macroinvertebrate indicators of stream ecological health[J]. Aquatic Ecology, 2011, 45(4): 517-527. doi: 10.1007/s10452-011-9372-x [15] LEAR G, BOOTHROYD I K G, TURNER S J, et al. A comparison of bacteria and benthic invertebrates as indicators of ecological health in streams[J]. Freshwater Biology, 2009, 54(7): 1532-1543. doi: 10.1111/j.1365-2427.2009.02190.x [16] 董婧, 卢少奇, 伍娟丽, 等. 基于微生物完整性指数的北京市城市河道生态系统健康评价[J]. 环境工程技术学报, 2022, 12(5): 1411-1419. [17] 赵隽莹, 张伟, 郭逍宇, 等. 衬砌对河道底泥细菌群落同质化的影响[J]. 中国环境科学, 2022, 42(2): 854-862. doi: 10.3969/j.issn.1000-6923.2022.02.040 [18] FALKOWSKI P G, FENCHEL T, DELONG E F. The Microbial Engines That Drive Earth's Biogeochemical Cycles[J]. Science, 2008, 320(5879): 1034-1039. doi: 10.1126/science.1153213 [19] ZHANG W, LEI M, LI Y, et al. Determination of vertical and horizontal assemblage drivers of bacterial community in a heavily polluted urban river[J]. Water Research, 2019, 161: 98-107. doi: 10.1016/j.watres.2019.05.107 [20] 苏瑶, 许育新, 安文浩, 等. 基于微生物生物完整性指数的城市河道生态系统健康评价[J]. 环境科学, 2019, 40(3): 1270-1279. doi: 10.13227/j.hjkx.201808032 [21] 高晓薇, 刘家宏. 深圳河流域城市化对河流水文过程的影响[J]. 北京大学学报, 2012, 48(1): 153-159. [22] 张志峰, 边朝辉. 深圳市布吉河水环境分析及治理方案研究[J]. 水利科技与经济, 2016, 22(8): 9-12. doi: 10.3969/j.issn.1006-7175.2016.08.002 [23] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [24] 王为木, 蔡旺炜. 生物完整性指数及其在水生态健康评价中的应用进展[J]. 生态与农村环境学报, 2016, 32(4): 517-524. doi: 10.11934/j.issn.1673-4831.2016.04.001 [25] NIU L, LI Y, WANG P, et al. Development of a microbial community-based index of biotic integrity (MC-IBI) for the assessment of ecological status of rivers in the Taihu Basin, China[J]. Ecological Indicators, 2018, 85: 204-213. doi: 10.1016/j.ecolind.2017.10.051 [26] LI Y, GAO L, NIU L, et al. Developing a statistical-weighted index of biotic integrity for large-river ecological evaluations[J]. Journal of Environmental Management, 2021, 277: 111382. doi: 10.1016/j.jenvman.2020.111382 [27] YANG N, LI Y, ZHANG W, et al. Reduction of bacterial integrity associated with dam construction: A quantitative assessment using an index of biotic integrity improved by stability analysis[J]. Journal of Environmental Management, 2019, 230: 75-83. [28] 安新丽, 陈廷廷, 赵晗, 等. 基于微生物生物完整性指数的地下水生态系统健康评价: 以包钢稀土尾矿库周边地下水生态系统为例[J]. 环境科学, 2016, 37: 3413-3422. [29] LAI J, ZOU Y, ZHANG J, et al. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package[J]. Methods in Ecology and Evolution, 2022, 13(4): 782-788. doi: 10.1111/2041-210X.13800 [30] 高雯琪, 陆颖, 屈霄, 等. 城镇化背景下河流生境评价——以深圳市为例[J]. 生态学报, 2021, 41(22): 8783-8793. [31] 谢孟星, 钱新, 刘彤, 等. 基于微生物完整性指数的河流健康评价——以无锡市为例[J]. 环境科学学报, 2020, 40(3): 1112-1120. [32] GENILLOUD O, GONZÁLEZ I, SALAZAR O, et al. Current approaches to exploit actinomycetes as a source of novel natural products[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(3): 375-389. [33] POLTI M A, APARICIO J D, BENIMELI C S, et al. Simultaneous bioremediation of Cr(VI) and lindane in soil by actinobacteria[J]. International Biodeterioration & Biodegradation, 2014, 88: 48-55. [34] ALVAREZ A, SAEZ J M, DAVILA COSTA J S, et al. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals[J]. Chemosphere, 2017, 166: 41-62. doi: 10.1016/j.chemosphere.2016.09.070 [35] MIKSCH S, MEINERS M, MEYERDIERKS A, et al. Bacterial communities in temperate and polar coastal sands are seasonally stable[J]. ISME Communications, 2021, 1(1): 29. doi: 10.1038/s43705-021-00028-w