-
石化行业作为推动国家能源发展的支柱产业,为国计民生提供了资源和能源保障。产业链由石油开采、油气炼制、石油化工等组成,工艺流程复杂,产生的废水组成复杂、有机物浓度高、毒性大且可生化性低。单一处理工艺难以达标排放,多用物化法进行预处理,厌氧/好氧等生物工艺进行二级处理。生物法作为石化废水二级处理中的核心单元,用于处理隔油气浮环节出水中的有机物、氮和磷等污染物。目前石化厂多采用组合工艺,典型代表为A2O工艺。A2O工艺通过厌氧段、缺氧段和好氧段逐步实现污染物的降解[1]。但生物法也有局限性,如微生物本身易受到有毒化学物质和高盐度的影响,降低处理效率[2]。因此如何减弱石化废水带给微生物的冲击,提高微生物的处理效果,成为了近年来的研究热点。
厌氧膜生物反应器(anaerobic membrane bioreactor, AnMBR)凭借其在生物处理、资源回收等方面的优势而广泛应用于工业废水处理中[3]。AnMBR将膜过滤和厌氧发酵有效结合,实现了HRT与SRT的完全分离[4],与普通厌氧消化相比,膜能过滤部分难降解污染物,处理难降解石化废水时仍有较好的COD去除效果。而胞外聚合物(extracellular polymeric substances, EPS)和溶解性微生物产物(soluble microbial products, SMP)会聚集在膜上形成膜污染,降低膜重复利用性并提高清洗成本,制约其工程化应用。目前研究多集中在膜污染的抑制上。与板式膜相比,中空纤维膜自身比表面积更大,沼气冲刷还能促进高分子化合物脱落,有效缓解膜污染[5]。电化学强化厌氧膜生物反应器(anaerobic electro-assisted membrane bioreactor, AnEMBR)在近些年受到了关注,此工艺利用阴极膜组件与负电性的EPS和SMP之间的静电排斥作用减缓膜污染的发生[6],电化学体系还有利于增强微生物代谢,提高生物处理效果[7],为处理难降解的石化废水提供了可能性。YANG等[8]利用碳纳米管(carbon nanotubes, CNTs)制备CNTs-HFMs膜并将其用于AnEMBR处理模拟废水,结果表明,加电组COD去除率大于95%,对照组的COD去除率均小于95%,加电组的最高甲烷产量高于对照组111.12 mL·(g·d)−1,加电组产甲烷菌含量较对照组提高近2倍;膜污染方面,加电组膜组件在进行3次水力清洗循环后,跨膜压差(trans-membrane pressure, TMP)仍能恢复到35 kPa,对照组只能恢复到50 kPa和60 kPa,说明加电组有效缓解不可逆膜污染。杜磊等[9]使用真空抽滤交联技术将CNTs负载于聚偏氟乙烯(polyvinylidene fluoride, PVDF)膜表面制备的CNT-PVDF膜,具有良好的抗污染性能。这说明CNTs具有良好的应用前景,可为导电膜的规模化生产和应用提供技术支持。此外,石化废水中常含有NH4+,仅依靠厌氧工艺难以使NH4+达标。因此,在厌氧工艺后需选择合适的好氧工艺,进行NH4+的降解。基于悬浮生物载体的生物膜与活性污泥复合工艺(integrated free-floating biofilm and activated sludge, IFFAS)因兼具了生物膜法和活性污泥法的优点而备受关注。借助悬浮载体与活性污泥的流态化接触在填料表面形成一定厚度的生物膜。生物膜外部的好氧区能进行硝化以及有机物的去除,内部由于氧扩散的限制形成缺氧区以及厌氧区,发生反硝化,从而使IFFAS具备实现同步硝化反硝化(simultaneous nitrification and denitrification, SND)的可能性[10]。LIU等[11]通过双单元的IFFAS工艺实现了59.9%~65.9%的TN去除率,与对照组相比提高了12.3%~13.5%。LIU等[12]制备了新型载体处理模拟废水,在精准的溶解氧(dissolved oxygen, DO)控制下去除了80.2%的TN。以上结果为AnEMBR-IFFAS耦合工艺处理石化废水提供了理论和技术支持。雷士雅等[13]构建了电化学辅助厌氧消化反应器 (bioelectrochemical-assisted anaerobic digestion reactor, BEAD) 处理石化废水强化COD的去除,BEAD的COD去除率为85%,出水COD稳定在(360±24) mg·L−1,而普通厌氧消化对COD的去除率小于60%。与BEAD相比,AnEMBR除了能够将石化废水中复杂的有机物转化为小分子的挥发性脂肪酸等物质,便于后续IFFAS中的微生物进行利用外,还可以通过膜组件截留部分COD提高COD去除效率并保持反应器内较高的污泥浓度。此外,AnEMBR还能通过收集甲烷气体实现能源回收,IFFAS构建同步硝化反硝化实现NH4+-N和TN的同时去除。
本研究构建实验室规模AnEMBR-IFFAS耦合工艺,考察此工艺在不同进水有机强度、HRT等条件下对石化废水中耗氧有机污染物(以COD计)、NH4+-N等污染物的处理效果,优化工艺参数,并探究生物群落组成,以期为工艺工程化应用提供参考。
AnEMBR-IFFAS耦合工艺处理石化废水
Performance of AnEMBR-IFFAS combined processes treating petrochemical wastewater
-
摘要: 石化废水具有成分复杂、生物毒性和可生化性差等特点,废水中的高浓度耗氧有机物(以COD计)以及有毒物质会抑制生物活性,传统厌氧/好氧工艺在处理此类废水时难以达到理想效果。为强化生物处理效果,构建了一种新型电化学强化厌氧膜生物反应器(AnEMBR)与基于悬浮生物载体的生物膜与活性污泥复合工艺(IFFAS)处理实际石化废水。通过AnEMBR构建的生物电化学系统去除COD,并通过IFFAS内的改性载体实现同步硝化反硝化(SND)以去除NH4+-N和TN。运行期间COD去除率大于95%,在-1.2 V的外加电压下缓解不可逆膜污染并回收沼气 (CH4占比90.7%) 。稳定运行阶段的COD、NH4+-N、TN的平均去除率可达到97.9%、93.1%和72.2%,平均出水COD为52.11 mg·L−1、NH4+-N为3.70 mg·L−1、TN为15.19 mg·L−1,达到了《石油化学工业污染物排放标准》(GB 31571‐2015)。以上研究结果可为石化废水强化生物处理提供参考。
-
关键词:
- 石化废水 /
- 电化学强化厌氧膜生物反应器 /
- 膜污染 /
- 同步硝化反硝化
Abstract: Petrochemical wastewater is characterized by complex composition, biotoxicity and poor biodegradable properties, and its high concentration oxygen consumption organic matter (calculated by COD) and toxic substances can inhibit biomass activity, which makes it difficult for the conventional anaerobic/aerobic process to achieve the desired treatment performance. To enhance the biological treatment, a novel anaerobic electro-assisted membrane bioreactor (AnEMBR) with integrated free-floating biofilm and activated sludge (IFFAS) based on modified carriers was constructed to treat actual petrochemical wastewater. The bioelectrochemical system was built to remove COD through AnEMBR, the simultaneous nitrification and denitrification (SND) process was constructed to remove NH4+-N and TN with the addition of modified carriers inside IFFAS. The results showed that during the operation, the COD removal rate was greater than 95%, while irreversible membrane fouling was relieved at an applied voltage of −1.2 V and biogas was recovered (CH4 accounted for 90.7%). The average removal rates of COD, NH4+-N and TN at the stable operation stage could reach 97.9%, 93.1% and 72.2%, respectively, and the average effluent COD, NH4+-N and TN were 52.11 mg·L−1, 3.70 mg·L−1 and 15.19 mg·L−1, respectively. They all met the standard of Petroleum Chemical Industry Pollutant Discharge (GB 31571-2015), which can provide a support for the enhanced biological treatment of petrochemical wastewater. -
表 1 反应器运行条件
Table 1. Operation conditions of reactor
阶段 AnEMBR
HRT/hIFFAS
HRT/hCOD/
(g·L−1)NH4+-N/
(mg·L−1)TN/
(mg·L−1)Ⅰ 24 24 1.10 45.90 46.66 Ⅱ 24 24 1.82 51.00 52.65 Ⅲ 18 18 1.55 48.05 49.38 Ⅳ 18 18 2.87 51.45 53.50 Ⅴ 24 24 2.69 53.54 55.46 表 2 COD去除率计算结果
Table 2. Calculation results of COD removal rate
阶段 AnEMBR平均COD
去除负荷/(kg·(m3·d)−1)IFFAS平均COD
去除负荷/(kg·(m3·d)−1)AnEMBR生物
降解去除率/%AnEMBR膜分离
去除率/%IFFAS生物
降解去除率/%Ⅰ 1.01 0.05 90.37 1.65 3.97 Ⅱ 1.66 0.12 88.31 2.64 6.78 Ⅲ 1.68 0.31 84.09 0.25 14.57 Ⅳ 3.23 0.51 76.17 8.41 13.25 Ⅴ 2.34 0.29 72.00 15.19 10.89 -
[1] TABRAIZ S, HASSAN S, ABBAS A, et al. Effect of effluent and sludge recirculation ratios on integrated fixed films A2O system nutrients removal efficiency treating sewage[J]. Desalination and Water Treatment, 2018, 114: 120-127. doi: 10.5004/dwt.2018.22356 [2] ABUHASEL K, KCHAOU M, ALQURAISH M, et al. Oily wastewater treatment: Overview of conventional and modern methods, challenges, and future opportunities[J]. Water, 2021, 13(7): 980. doi: 10.3390/w13070980 [3] YANG T, MA Z, YANG Q. Formation and performance of Kaolin/MnO2 bi-layer composite dynamic membrane for oily wastewater treatment: Effect of solution conditions[J]. Desalination, 2011, 270(1): 50-56. [4] LEI Z, YANG S, LI Y, et al. Application of anaerobic membrane bioreactors to municipal wastewater treatment at ambient temperature: A review of achievements, challenges, and perspectives[J]. Bioresource Technology, 2018, 267: 756-768. doi: 10.1016/j.biortech.2018.07.050 [5] KUDISI D, LU X, ZHENG C, et al. Long-term performance, membrane fouling behaviors and microbial community in a hollow fiber anaerobic membrane bioreactor (HF-AnMBR) treating synthetic terephthalic acid-containing wastewater[J]. Journal of Hazardous Materials, 2022, 424: 127458. doi: 10.1016/j.jhazmat.2021.127458 [6] ANJUM F, KHAN I M, KIM J, et al. Trends and progress in AnMBR for domestic wastewater treatment and their impacts on process efficiency and membrane fouling[J]. Environmental Technology & Innovation, 2021, 21: 101204. [7] LI Z, YUAN L, YANG C, et al. Anaerobic electrochemical membrane bioreactor effectively mitigates antibiotic resistance genes proliferation under high antibiotic selection pressure[J]. Environment International, 2022, 166: 107381. doi: 10.1016/j.envint.2022.107381 [8] YANG Y, QIAO S, JIN R, et al. Novel anaerobic electrochemical membrane bioreactor with a CNTs hollow fiber membrane cathode to mitigate membrane fouling and enhance energy recovery[J]. Environmental Science & Technology, 2019, 53(2): 1014-1021. [9] 杜磊, 魏朔, 全燮, 等. CNT-PVDF复合中空纤维膜的制备及其电辅助抗膜污染性能[J]. 环境工程学报, 2020, 14(4): 864-874. [10] 毛彦俊, 全燮, 赵慧敏, 等. 应用亲电型悬浮生物载体处理工业废水的现场中试[J]. 环境工程, 2017, 35(9): 29-34. [11] LIU T, LI Q, WU N, et al. Enhancing the formation of simultaneous nitrification and denitrification (SND) biofilm and nitrogen removal performance using two-units IFFAS process filled with surface-modified carriers[J]. Biochemical Engineering Journal, 2022, 179: 108316. doi: 10.1016/j.bej.2021.108316 [12] LIU T, JIA G, QUAN X. Accelerated start-up and microbial community structures of simultaneous nitrification and denitrification using novel suspended carriers[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(2): 577-584. [13] 雷士雅. 电化学强化高浓度石化废水厌氧消化产甲烷性能研究[D]. 大连: 大连理工大学, 2022. [14] 乔森, 张美娇, 邵东海, 等. 新型单级自养脱氮与反硝化除磷耦合工艺[J]. 安全与环境学报, 2018, 18(1): 257-263. [15] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [16] 谢红伟. 水杨酸比色法测定水中硝酸盐氮的含量[J]. 贵州农业科学, 1999, 27(3): 40-41. [17] 王孝平, 邢树礼. 考马斯亮蓝法测定蛋白含量的研究[J]. 天津化工. 2009, 23(3): 40-42. [18] 孙焕, 杨宏军, 胡桂学, 等. 金黄色葡萄球菌荚膜多糖的提取及其多糖含量的测定[J]. 中国农学通报, 2009, 25(6): 1-4. [19] 郑志佳, 吴迪, 宋美芹, 等. 移动床生物膜反应器两种不同工艺形式的性能对比[J]. 中国给水排水, 2017, 33(11): 16-21. [20] KATURI K P, WERNER C M, JIMENEZ-SANDOVAL R J, et al. A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions[J]. Environmental Science & Technology, 2014, 48(21): 12833-12841. [21] CHENG S, XING D, CALL D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009, 43(10): 3953-3958. [22] WANG Y, LI W, SHENG G, et al. In-situ utilization of generated electricity in an electrochemical membrane bioreactor to mitigate membrane fouling[J]. Water Research, 2013, 47(15): 5794-5800. doi: 10.1016/j.watres.2013.06.058 [23] LIU Y, LIU Y, TAY J. The effects of extracellular polymeric substances on the formation and stability of biogranules[J]. Applied Microbiology and Biotechnology, 2004, 65(2): 143-148. [24] ZHANG K, YANG Y, QIAO S, et al. Alternating current-enhanced carbon nanotubes hollow fiber membranes for membrane fouling control in novel membrane bioreactors[J]. Chemosphere, 2021, 277: 130240. doi: 10.1016/j.chemosphere.2021.130240 [25] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation−emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710. [26] ZHENG S, LIU F, WANG B, et al. Methanobacterium capable of direct interspecies electron transfer[J]. Environmental Science & Technology, 2020, 54(23): 15347-15354. [27] BAEK G, KIM J, LEE S, et al. Development of biocathode during repeated cycles of bioelectrochemical conversion of carbon dioxide to methane[J]. Bioresource Technology, 2017, 241: 1201-1207. doi: 10.1016/j.biortech.2017.06.125 [28] ROTARU A, SHRESTHA P M, LIU F, et al. A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane[J]. Energy and Environmental Science, 2014, 7(1): 408-415. doi: 10.1039/C3EE42189A [29] 杨冰, 卢向阳, 田云. 甲烷八叠球菌研究进展[J]. 化学与生物工程, 2012, 29(12): 7-11. [30] ALFARO N, FDZ-POLANCO M, FDZ-POLANCO F, et al. H2 addition through a submerged membrane for in-situ biogas upgrading in the anaerobic digestion of sewage sludge[J]. Bioresource Technology, 2019, 280: 1-8. doi: 10.1016/j.biortech.2019.01.135 [31] CHA I, MIN U, KIM S, et al. Methanomethylovorans uponensis sp. nov., a methylotrophic methanogen isolated from wetland sediment[J]. Antonie van Leeuwenhoek, 2013, 104(6): 1005-1012. doi: 10.1007/s10482-013-0020-4 [32] CHEN C, YANG B, GAO A, et al. Suppression of methanogenesis in paddy soil increases dimethylarsenate accumulation and the incidence of straighthead disease in rice[J]. Soil Biology and Biochemistry, 2022, 169: 108689. doi: 10.1016/j.soilbio.2022.108689 [33] Hu F, ZHANG S, WANG X, et al. Investigating the role of different materials supplementation in anaerobic digestion of kitchen waste: Performance and microbial community dynamics[J]. Biochemical Engineering Journal, 2022, 184: 108490. [34] UEKI A, GOTO K, KAKU N, et al. Aminipila butyrica gen. nov., sp. nov., a strictly anaerobic, arginine-decomposing bacterium isolated from a methanogenic reactor of cattle waste[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(1): 443-448. doi: 10.1099/ijsem.0.002534 [35] JOICY A, SONG Y, YU H, et al. Nitrite and nitrate as electron acceptors for bioelectrochemical ammonium oxidation under electrostatic field[J]. Journal of Environmental Management, 2019, 250: 109517. doi: 10.1016/j.jenvman.2019.109517 [36] JOICY A, SONG Y, LEE C. Electroactive microorganisms enriched from activated sludge remove nitrogen in bioelectrochemical reactor[J]. Journal of Environmental Management, 2019, 233: 249-257. [37] 周婷, 余林鹏, 符力, 等. 微生物直接电子传递: 甲烷代谢古菌研究进展[J]. 应用与环境生物学报, 2018, 24(5): 1032-1040. [38] DU Q, MU Q, WU G. Metagenomic and bioanalytical insights into quorum sensing of methanogens in anaerobic digestion systems with or without the addition of conductive filter[J]. Science of the Total Environment, 2021, 763: 144509. doi: 10.1016/j.scitotenv.2020.144509 [39] DAI H, SUN Y, WAN D, et al. Simultaneous denitrification and phosphorus removal: A review on the functional strains and activated sludge processes[J]. Science of the Total Environment, 2022, 835: 155409. doi: 10.1016/j.scitotenv.2022.155409 [40] CHAI F, LI L, XUE S, et al. Auxiliary voltage enhanced microbial methane oxidation co-driven by nitrite and sulfate reduction[J]. Chemosphere, 2020, 250: 126259. doi: 10.1016/j.chemosphere.2020.126259