-
据统计[1],2021年,全球葡萄种植面积达到734×104 hm2,葡萄酒产量超过2 500×107 L。葡萄酒生产过程中产生的有机废水主要来源于加工设备的清洗和残液的排出,这些废水中含有大量由醇、糖和有机酸组成的溶解性有机物、微量营养素、多酚类化合物[2-5]。受葡萄生长周期的影响,在9—11月,葡萄酒酿制高峰期所产生的废水量及废水中的有机物浓度增加明显[6]。综上,葡萄酒生产废水总体呈酸性,色度和有机物浓度高,可生化性好,但水质、水量季节性波动明显。
厌氧消化作为一种能高效降解有机质的技术,被广泛用于葡萄酒生产废水的预处理过程。厌氧序批式生物膜反应器(AnSBBR)兼备生物膜法、序批式反应器的优点。生物膜法通过载体富集微生物,从而增加了反应器中生物质的浓度和多样性,提高了系统的抗冲击能力[7-9]。序批式工艺不仅自动化程度高,还存在周期性循环和完全混合的特性,从而提高了抗冲击能力[5]。目前,AnSBBR优异的处理性能和抗冲击能力已在生物柴油[7]、甘油[8]和金属加工[9]等多种废水的处理研究中得以证实,但其对葡萄酒生产废水的处理负荷和消化性能尚不明确。
通常,较低的有机负荷(OLR)虽利于反应器的运行稳定,但增加了运行成本;而高OLR虽有助于有机物利用,但易导致系统酸化。故通过逐步提高OLR探索AnSBBR处理葡萄酒生产废水所能承受的最大OLR尤为重要。目前,厌氧反应器在不同OLR下处理葡萄酒生产废水的研究主要是OLR对消化性能的影响。然而,微生物对环境变化敏感,高OLR下导致反应器运行失败的原因是破坏了体系中菌群结构的平衡[10]。因此,有必要深入探究OLR变化对菌群结构的影响。
本研究采用AnSBBR处理模拟葡萄酒生产废水,通过监测AnSBBR各OLR运行期间出水水质、甲烷产量和产甲烷活性等来评估AnSBBR处理葡萄酒生产废水的性能,利用高通量测序对生物膜体系中群落结构的演替规律进行解析,确定AnSBBR处理葡萄酒生产废水的最佳工况条件,旨在为推动AnSBBR的工程化应用提供依据。
厌氧序批式生物膜反应器处理葡萄酒生产废水性能及菌群演替分析
Performance on treating winery wastewater by AnSBBR and analysis of the microbial community succession
-
摘要: 为探究厌氧序批式生物膜法处理葡萄酒生产废水的可行性,采用厌氧序批式生物膜反应器(AnSBBR)预处理模拟葡萄酒生产废水,通过逐级增加进水浓度来提升有机负荷并对AnSBBR在不同负荷下的运行特性及菌群演替规律。结果表明: 在35 ℃、HRT为20 h、周期为4 h的运行工况下,当OLR为1.2~9.6 g·(L·d)−1时,AnSBBR均能保证出水COD值低于200 mg·L−1,当OLR为5.4 g·(L·d)−1时,运行性能最佳,COD去除率为(97.2±0.5)%,甲烷产率为(349.9±7.6) mL·g−1;与OLR为1.2 g·(L·d)−1相比,OLR为9.6 g·(L·d)−1时产甲烷速率提高69.3%,生物量增加294.3%,辅酶F420浓度增加190.8%,电子传递活性(INT-ETS)提高88.4%;当OLR增至10.2 g·(L·d)−1后,反应器中VFA浓度持续增加,丙酸和丁酸积累,缓冲能力明显下降,系统无法适应该负荷条件;高通量测序显示,群落中主要的细菌为Desulfovibrio、Brevinema、Treponema、Longilinea、Paludibacter和Leptolinea,主要的古菌为Methanobacterium、Methanobrevibacter,Methanosaeta和Methanosarcina;受进水基质组分和负荷的影响,细菌和古菌中丰度占比最大的分别为Desulfovibrio(12.4%)和Methanobacterium(17.1%);当OLR为5.4 g·(L·d)−1时,产甲烷菌多样性更高且在门和属水平上整体丰度最大,分别为26.7%和26.3%;当OLR为9.6 g·(L·d)−1时,培养出特定的菌属(Methanobrevibacter)以适应环境。由此可以看出,逐级提升OLR的运行策略可促进生物膜系统的增殖和代谢活性。本研究确定了AnSBBR处理葡萄酒生产废水的最大及最佳运行负荷,该结果可为推动AnSBBR的工程化应用提供依据。
-
关键词:
- 葡萄酒生产废水 /
- 厌氧序批式生物膜反应器 /
- 有机负荷 /
- 胞外聚合物 /
- 群落结构
Abstract: In order to explore the feasibility of treating winery wastewater by anaerobic sequencing biofilm batch reactor (AnSBBR), a laboratory-scale AnSBBR was used to pretreat the simulated winery wastewater. The organic loading rate was achieved by the gradual increase of the influent concentration, and its operational characteristics and microbial community composition at different loading rates were studied. The results showed that at 35 ℃, HRT of 20 h and operation period of 4 h, the effluent COD of AnSBBR was lower than 200 mg·L−1 when the OLR was 1.2~9.6 g·(L·d)−1. When the OLR was 5.4 g·(L·d)−1, the COD removal rate was 97.2±0.5%, the methane yield was 349.9±7.6 mL·g−1. Compared with the OLR of 1.2 g·(L·d)−1, the methanogenic rate increased by 69.3%, the biofilm biomass increased by 294.3%, the content of coenzyme F420 increased by 190.8%, and the activity of INT-ETS increased by 88.4% at the OLR of 9.6 g·(L·d)−1. When the OLR reached 10.2 g·(L·d)−1, the volatile fatty acids (VFA) concentration in AnSBBR continued to increase, the propionic acid and butyric acid gradually accumulated, and the buffer capacity significantly decreased, indicating that the AnSBBR system could note adopt the OLR of 10.2 g·(L·d)−1. Illumina Miseq sequencing showed that the dominant bacteria were Desulfovibrio, Brevinema, Treponema, Longilinea, Paludibacter, and Leptolinea, the dominant archaea were Methanobacterium, Methanobrevibacter, Methanosaeta, and Methanosarcina. The relative abundances of Desulfovibrio(12.4%)and Methanobacterium(17.1%) were the largest because the microbial community structure was affected by the characteristics of the influent matrix. When the OLR was 5.4 g·(L·d)−1, the diversity of archaea was higher, and the abundances were the largest at the level of phylum and genus with 26.7% and 26.3%, respectively. At the OLR of 9.6 g·(L·d)−1, the relative abundance of methanobacterium and methanosarcina were reduced and specific archaea (Methanobrevibacter) was cultivated to adapt to the environment. The results found that the operation strategy of increasing OLR step by step promotes proliferation and metabolic activity of the biofilm system. And the maximum and optimal organic loading rate of AnSBBR for the treatment of winery wastewater were determined in this study, then promoted the engineering application of AnSBBR. -
表 1 AnSBBR运行参数
Table 1. Operation parameters of AnSBBR
阶段 时间/
dCOD/
(g·L−1)水力停留
时间/h运行
周期/h有机负荷/
(g·(L·d)−1)驯化 1~25 1.0 40 8 0.6 驯化 26~37 1.0 20 4 1.2 强化 38~172 1.0~8.0 20 4 1.2~9.6 稳定 173~238 8.0~8.5 20 4 9.6~10.2 表 2 不同类型反应器在中温下处理葡萄酒生产废水的性能对比
Table 2. Comparison of reactor performance under the mesophilic condition between this study and many other studies
表 3 不同OLR下Gompertz模型产甲烷拟合结果
Table 3. Results of Gompertz methane production under different OLRs
有机负荷/
(g·(L·d)−1)最大甲烷产量/
(mL·g−1)最大甲烷产率/
(mL·(g·h)−1)拟合系数R2 实测产量/
(mL·g−1)接种污泥 26.54±6.19 2.83±0.32 0.99 19.16±5.46 1.2 65.47±1.42 34.44±5.35 0.98 67.95±0.17 5.4 147.96±3.78 57.10±8.02 0.98 153.43±2.80 9.6 167.34±4.88 59.36±8.74 0.98 172.68±0.87 9.61) 138.96±4.00 58.31±9.90 0.97 143.58±1.04 注:1) 为重新稳定的负荷。 -
[1] International Organisation of Vine and Wine (OIV). OIV statistical report on world vitiviniculture [DB/OL]. (2021-07-16) [2022-12-28]. https: //www. oiv. int. [2] VITAL-JACOME M A, BUITRÓN G. Thermophilic anaerobic digestion of winery effluents in a two-stage process and the effect of the feeding frequency on methane production[J]. Chemosphere, 2021, 272: 129865. doi: 10.1016/j.chemosphere.2021.129865 [3] KEYSER M, WITTHUHN R C, RONQUEST L C, et al. Treatment of winery effluent with upflow anaerobic sludge blanket (UASB): Granular sludges enriched with Enterobacter sakazakii[J]. Biotechnology Letters, 2003, 25(22): 1893-1898. doi: 10.1023/B:BILE.0000003978.72266.96 [4] RUIZ C, TORRIJOS M, SOUSBIE P, et al. Treatment of winery wastewater by an anaerobic sequencing batch reactor[J]. Water Science and Technology, 2002, 45(10): 219-224. doi: 10.2166/wst.2002.0336 [5] IOANNOU L A, PUMA G L, FATTA-KASSINOS D. Treatment of winery wastewater by physicochemical, biological and advanced processes: A review[J]. Journal of Hazardous Materials, 2015, 286: 343-368. doi: 10.1016/j.jhazmat.2014.12.043 [6] LIANG X Y, RENGASAMY P C, SMERNIK R, et al. Does the high potassium content in recycled winery wastewater used for irrigation pose risks to soil structural stability?[J]. Agricultural Water Management, 2021, 243: 106422. doi: 10.1016/j.agwat.2020.106422 [7] BEZERRA R A, RODRIGUES J A, RATUSZNEI S M, et al. Effect of organic load on the performance and methane production of an AnSBBR treating effluent from biodiesel production[J]. Applied Biochemistry and Biotechnology, 2011, 165(1): 347-368. doi: 10.1007/s12010-011-9255-6 [8] LOVATO G, MONCAYO BRAVO I S, RATUSZNEI S M, et al. The effect of organic load and feed strategy on biohydrogen production in an AnSBBR treating glycerin-based wastewater[J]. Journal of Environmental Management, 2015, 154: 128-137. [9] CARVALHINHA P P, FLÔRES A, RODRIGUES J A D, et al. AnSBBR applied to the treatment of metalworking fluid wastewater: effect of organic and shock load[J]. Applied Biochemistry and Biotechnology, 2010, 162(6): 1708-1724. doi: 10.1007/s12010-010-8952-x [10] VÁSQUEZ J, NAKASAKI K. Effects of shock loading versus stepwise acclimation on microbial consortia during the anaerobic digestion of glycerol[J]. Biomass and Bioenergy, 2016, 86: 129-135. doi: 10.1016/j.biombioe.2016.02.001 [11] 熊荣波, 柳丽, 孟艳, 李屹, 等. 含固率和接种比对菜籽饼中温厌氧消化特性的影响[J]. 环境科学研究, 2022, 35(1): 230-237. doi: 10.13198/j.issn.1001-6929.2021.08.20 [12] LI D, CHEN L, LIU X F, et al. Instability mechanisms and early warning indicators for mesophilic anaerobic digestion of vegetable waste[J]. Bioresource Technology, 2017, 245: 90-97. doi: 10.1016/j.biortech.2017.07.098 [13] LI J Z, YAN H, CHEN Q Y, et al. Performance of anaerobic sludge and the microbial social behaviors induced by quorum sensing in a UASB after a shock loading[J]. Bioresource Technology, 2021, 330: 124972. doi: 10.1016/j.biortech.2021.124972 [14] 赵阳, 李秀芬, 堵国成, 等. 钴及其配合物对产甲烷关键酶的影响[J]. 水资源保护, 2008, 24(2): 82-85. doi: 10.3969/j.issn.1004-6933.2008.02.022 [15] ZHAO Z Q, ZHANG Y B, YU Q L, et al. Communities stimulated with ethanol to perform direct inter species electron transfer for syntrophic metabolism of propionate and butyrate[J]. Water Research, 2016, 102: 475-484. doi: 10.1016/j.watres.2016.07.005 [16] 李韧, 于莉芳, 张兴秀, 等. 硝化生物膜系统对低温的适应特性: MBBR和IFAS[J]. 环境科学, 2020, 41(8): 3691-3698. [17] BASSET N, SANTOS E, DOSTA J, et al. Start-up and operation of an AnMBR for winery wastewater treatment[J]. Ecological Engineering, 2016, 86: 279-289. doi: 10.1016/j.ecoleng.2015.11.003 [18] CHAI S L, GUO J, CHAI Y, et al. Anaerobic treatment of winery wastewater in moving bed biofilm reactors[J]. Desalination and Water Treatment, 2014, 52(10): 1841-1849. [19] LI L, PENG X Y, WANG X M, et al. Anaerobic digestion of food waste: A review focusing on process stability[J]. Bioresource Technology, 2018, 248: 20-28. doi: 10.1016/j.biortech.2017.07.012 [20] YUAN K, LI S, ZHONG F. Treatment of coking wastewater in biofilmbased bioaugmentation process: Biofilm formation and microbial community analysis[J]. Journal of Hazardous Materials, 2020, 400(13): 123117. [21] 柴立, 薛旭东, 邓彦, 等. 冲击负荷对厌氧序批式反应器的影响及其恢复重建过程[J]. 环境污染与防治, 2013, 35(9): 54-57. doi: 10.3969/j.issn.1001-3865.2013.09.011 [22] REYNOLDS P J, COLLERAN E. Evaluation and improvement of methods for coenzyme F420 analysis in anaerobic sludges[J]. Journal of Microbiological Methods, 1987, 7(2/3): 115-130. [23] WILÉN B M, JIN B, LANT P. The influence of key chemical constituents in activated sludge on surface and flocculating properties[J]. Water Research, 2003, 37(9): 2127-2139. doi: 10.1016/S0043-1354(02)00629-2 [24] THOMAS S, DERLON N, DUEHOLM M S, et al. Extracellular polymeric substances of biofilms: Suffering from an identity crisis[J]. Water Research, 2019, 151(15): 1-7. [25] YOU G X, HOU J, WANG P F, et al. Effects of CeO2 nanoparticles on sludge aggregation and the role of extracellular polymeric substances: Explanation based on extended DLVO[J]. Environmental Research, 2016, 151: 698-705. doi: 10.1016/j.envres.2016.08.023 [26] KONG D W, ZHANG K Q, LIANG J F, et al. Methanogenic community during the anaerobic digestion of different substrates and organic loading rates[J]. MicrobiologyOpen, 2019, 8(5): e00709. doi: 10.1002/mbo3.709 [27] HUANG W H, WANG Z Y, ZHOU Y, et al. The role of hydrogenotrophic methanogens in an acidogenic reactor[J]. Chemosphere, 2015, 140: 40-46. doi: 10.1016/j.chemosphere.2014.10.047