-
随着社会经济的快速发展,城市生活垃圾产生量也大幅增加[1]。由于技术的局限,过去生活垃圾的处置方式主要是填埋处理。生活垃圾在填埋发酵过程中会发生一系列生物化学反应,产生大量的垃圾渗滤液[2]。渗滤液中污染物种类繁多,具有较大的环境威胁,如果得不到妥善处置,将会严重污染周边土壤及地下水。为进一步提高渗滤液处理后的出水水质,满足污染控制标准,一些成熟的膜处理技术(如纳滤NF和反渗透RO)作为生化单元后的深度处理单元,越来越多地应用于渗滤液处理的工程实践中[3-6]。但是,上述膜处理技术本质上仅是一种物理分离过程,不可避免地产生10%~30%的膜过滤浓缩液[7-8]。膜浓缩液成分复杂,含有大量的难降解有机物(腐殖质络合体、芳香族化合物、卤代烃)、重金属、无机盐离子等,处理难度较大[9-10]。因此,寻找一种经济高效的渗滤液浓缩液处理方案成为当前亟需解决的一个难题。
目前,浓缩液的处理技术主要包含减量处理(蒸发)、全量处理(高级氧化、回喷焚烧)等[11-15]。回灌方式在过去10 a的浓缩液处理中比较普遍[16-17],但目前多数地区已禁止浓缩液回灌。蒸发技术对浓缩液的减量效果显著(70%~90%),但该技术存在设备易腐蚀、易结垢、存在明显的二次污染(恶臭、蒸发母液)等问题。焚烧法处理浓缩液,初期投资较大、焚烧过程控制复杂,且运行中容易导致系统腐蚀、炉渣结渣、结焦[18]。因此,更多的学者着手研究环境友好的高级氧化技术处理垃圾浓缩液。
由于高级氧化技术对难降解有机物的去除效果较好[19-21],且设备简单高效、适用范围广,可以作为预处理或深度处理单元与其他水处理技术联用,因此,受到研究人员的广泛关注。高级氧化技术的核心是在热量[22]、UV辐射[23-24]、超声[25]、电等[26-27]能量场的作用下,通过一系列物理化学过程产生大量的高活性自由基(·OH、·Cl、·SO4-等)。在自由基的氧化作用下,大分子有机物通过断链和开环等反应被分解成低毒、易生物降解的小分子,甚至被完全矿化为CO2和H2O[28-30]。作为一种成熟的高级氧化技术,传统Fenton技术(Fe2+/H2O2体系)利用Fe2+与H2O2在酸性条件下反应生成羟基自由基降解有机物,但其存在pH适用范围窄、铁泥产生量较大和H2O2利用效率低等缺s点。UV-Fenton催化氧化法结合了UV/H2O2和H2O2/Fe2+ 2种技术的优势,兼具紫外线的光解活性和羟基自由基的强氧化能力,可在一定程度上克服上述单一技术的缺陷[31]。UV-Fenton催化氧化技术被应用至不同类型合成废水或一些实际废水,但将其应用于膜浓缩液中COD深度处理比较少见。
本课题组前期对比研究了UV-Fenton催化氧化技术与传统Fenton法、UV/H2O2法对浓缩液中COD的去除效果,对UV-Fenton工艺的实验条件进行了系统优化,此外,比较了EM (effective microorganisms)菌单级好氧法与EM菌AO法处理浓缩液的脱氮效果,优化了EM菌AO法组合MBR膜法的工艺参数。在前期研究的基础上,本研究以具有代表性的深圳市下坪填埋场垃圾渗滤液膜浓缩液作为实验对象,采用UV-Fenton催化氧化+EM高效生物脱氮(AO法+MBR膜法)组合工艺开展连续120 d的中试实验,综合考察组合工艺在中试尺度上对难降解有机物以及总氮、氨氮的去除效果。
紫外光芬顿+EM菌高效脱氮组合工艺在垃圾渗滤液膜浓缩液处理的中试应用
Pilot-scale application of the combined process of UV-Fenton with EM micro-flora based biochemical denitrification in the treatment of landfill leachate membrane concentrate
-
摘要: 针对垃圾渗滤液膜浓缩液中有机物成分复杂、难以降解的特点,采用UV-Fenton催化氧化+EM菌(有效微生物菌群)高效生物脱氮组合工艺开展连续120 d的中试实验,考察了组合工艺中各处理单元对浓缩液中COD、TN和NH3-N的去除效果。结果表明,组合工艺运行稳定,对COD、TN和NH3-N的去除率分别达到95.2%、90%和95%,出水各项指标均能满足《生活垃圾填埋场污染控制标准》(GB 16889-2008)排放要求。结合紫外可见光谱、三维激发-发射光谱和气相色谱-质谱实验结果,UV-Fenton催化氧化可使浓缩液中含有共轭键有机物的芳香结构在较大程度上被破坏,分子质量聚合度大幅降低,从而将腐殖质以及可见光区富里酸等难降解的大分子有机物降解为小分子,从而提高可生化性。后续的EM菌高效生物脱氮单元基于硝化反硝化,可以进一步高效去除NH3-N和TN。Abstract: With regards to the complex composition and difficult degradation of organic compounds in landfill leachate membrane concentrate, a pilot-scale test was carried out continuously in 120 days by using the combined process of UV-Fenton catalytic oxidation with highly efficient microorganism (EM) based biological denitrification. The removal efficiency of COD, TN and NH3-N of leachate membrane concentrate by each treatment unit of the combined process were investigated. The results illustrated that the combined process performed stably, and the corresponding removal rate of COD, TN and NH3-N reached 95.2%, 90% and 95%, respectively. Meanwhile, each effluent indicator could meet the discharge requirements in Domestic Waste Pollution Control Standard (GB 16889-2008). On the basis of UV-vis spectra, three-dimensional fluorescence spectra and GC-MS analysis, the UV-Fenton unit could greatly damage the aromatic structure of the conjugated organic compounds in the leachate concentrate, and significantly reduced polymerization degree of the molecular weight, thus degraded the refractory macromolecules such as humus-like substance or fulvic acids in visible light region into small molecules and improved the biodegradability of leachate concentrate. The subsequent EM based biological denitrification unit could further and efficiently remove NH3-N and TN.
-
表 1 浓缩液处理前后的特征吸光度及比值变化
Table 1. Comparison of the values and ratios of the specific absorbances of leachate concentrate before and after treatment
水样 E254 E280 E240/E420 E253/E203 E250/E365 E300/E400 原液 0.20 0.17 12.22 0.19 4.25 4.75 出水 0.01 0.01 22.60 0.06 6.92 6.86 -
[1] MIAO L, Yang G, TAO T, PENG Y. Recent advances in nitrogen removal from landfill leachate using biological treatments: A review[J]. Environmental Management, 2019, 235: 178-185. [2] TENG C Y, ZHOU K G, PENG C H, et al. Characterization and treatment of landfill leachate: A review[J]. Water Research, 2021, 203: 117525. doi: 10.1016/j.watres.2021.117525 [3] 陈媛媛, 孙琳, 陈建飞. 反渗透膜在垃圾渗滤液处理中的应用[J]. 工程技术研究, 2021, 6(11): 126-127. doi: 10.3969/j.issn.1671-3818.2021.11.059 [4] 李丛林. 论膜技术在垃圾渗滤液处理中的应用[J]. 资源节约与环保, 2020, 11: 115-116. doi: 10.3969/j.issn.1673-2251.2020.05.099 [5] SHAO L M, DENG Y T, QIU J J, et al. DOM chemodiversity pierced performance of each tandem unit along a full-scale “MBR+NF” process for mature landfill leachate treatment[J]. Water Research, 2021, 195(17): 117000. [6] AMARAL M C S, MORAVIA W G, LANGE L C, et al. Nanofiltration as post-treatment of MBR treating landfill leachate[J]. Desalination & Water Treatment Science & Engineering, 2015, 53: 1482-1491. [7] LI H K and LIU H. Treatment and recovery methods for leachate concentrate from landfill and incineration: A state-of-the-art review[J]. Journal of Cleaner Production, 2021, 329: 129720. doi: 10.1016/j.jclepro.2021.129720 [8] KEYIKOGLUeyikoglu R, KARATAS O, REZANIA H, et al. A review on treatment of membrane concentrates generated from landfill leachate treatment processes[J]. Separation and Purification Technology, 2021, 259: 118182. doi: 10.1016/j.seppur.2020.118182 [9] CHEN L, LI F Q, HE F D, et al. Membrane distillation combined with electrocoagulation and electrooxidation for the treatment of landfill leachate concentrate[J]. Separation and Purification Technology, 2022, 291: 120936. doi: 10.1016/j.seppur.2022.120936 [10] LIU D, YUAN Y, WEI Y Q, et al. Removal of refractory organics and heavy metals in landfill leachate concentrate by peroxi-coagulation process[J]. Journal of Environmental Sciences, 2022, 116: 43-51. doi: 10.1016/j.jes.2021.07.006 [11] ZHANG H, JI Z H, ZENG Y X, et al. Solidification/stabilization of landfill leachate concentrate contaminants using solid alkali-activated geopolymers with a high liquid solid ratio and fixing rate[J]. Chemosphere, 2022, 288(2): 132495. [12] GUVENC S Y. Optimization of COD removal from leachate nanofiltration concentrate using H2O2/Fe2+/heat- activated persulfate oxidation processes[J]. Process Safety and Environmental Protection, 2019, 126: 7-17. doi: 10.1016/j.psep.2019.03.034 [13] BENYOUCEF F, MAKAN A, El GHMARI A, et al. Optimized evaporation technique for leachate treatment: small scale implementation[J]. Journal of Environmental Management, 2016, 170: 131-135. [14] TALALAJ I A. Mineral and organic compounds in leachate from landfill with concentrate recirculation[J]. Environmental Science & Pollution Research, 2015, 22: 2622-2633. [15] 王子龙. 垃圾渗沥液纳滤浓缩液处理工艺路线探讨[J]. 福建建设科技, 2020, 4: 58-60. doi: 10.3969/j.issn.1006-3943.2020.04.017 [16] 邱中平, 李明星, 刘洋, 等. 好氧生物反应器填埋场的渗滤液回灌量研究[J]. 西南交通大学学报, 2019, 54(1): 168-172. [17] TALALAJ I A, BIEDKA P. Impact of concentrated leachate recirculation on effectiveness of leachate treatment by reverse osmosis[J]. Ecological Engineering, 2015, 85: 185-192. doi: 10.1016/j.ecoleng.2015.10.002 [18] 吴子涵, 任旭, 肖玉, 等. 上海市某垃圾焚烧厂渗滤液膜浓缩液回喷焚烧后的固相物质转化特性[J]. 环境工程学报, 2019, 13(8): 1949-1958. doi: 10.12030/j.cjee.201812128 [19] REHMAN F, SAYED M, KHAN J A, et al. Oxidative removal of brilliant green by UV/S2O82-, UV/HSO5- and UV/H2O2 processes in aqueous media: A comparative study[J]. Journal of Hazardous Materials, 2018, 357: 506-514. doi: 10.1016/j.jhazmat.2018.06.012 [20] LIN K Y A, ZHANG Z Y. Degradation of Bisphenol A using peroxymonosulfate activated by one-step prepared sulfur-doped carbon nitride as a metal-free heterogeneous catalyst[J]. Chemical Engineering Journal. 2017, 313: 1320-1327. [21] AO X, LIU W, SUN W, et al. Medium pressure UV-activated peroxymonosulfate for ciprofloxacin degradation: Kinetics, mechanism, and genotoxicity[J]. Chemical Engineering Journal, 2018, 345: 87-97. doi: 10.1016/j.cej.2018.03.133 [22] WALDEMER R H, TRATNYEK P G, JOHNSON R L, NURMI J T. Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products[J]. Environmental Science & Technology, 2007, 41: 1010-1015. [23] DE L A, HE X, DIONYSION D D, et al. Effects of bromide on the degradation of organic contaminants with UV and Fe2+ activated persulfate[J]. Chemical Engineering Journal, 2017, 318: 206-213. doi: 10.1016/j.cej.2016.06.066 [24] SU S, CAO C, ZHAO Y, DIONYSION D D. Efficient transformation and elimination of roxarsone and its metabolites by a new a-FeOOH@GCA activating persulfate system under UV irradiation with subsequent As(V) recovery[J]. Applied Catalysis B:Environmental, 2019, 245: 207-219. doi: 10.1016/j.apcatb.2018.12.050 [25] SONGLIN W, NING Z, SI W, QI Z, ZHI Y. Modeling the oxidation kinetics of sono-activated persulfate’s process on the degradation of humic acid[J]. Ultrasonics Sonochemistry, 2015, 23: 128-134. doi: 10.1016/j.ultsonch.2014.10.026 [26] ARELLANO M, SANROMAN M A, PAZOS M. Electro-assisted activation of peroxymonosulfate by iron-based minerals for the degradation of 1-butyl-1-methylpyrrolidinium chloride[J]. Separation & Purification Technology, 2019, 208: 34-41. [27] DU X, ZHANG K, XIE B, ZHAO J, et al. Peroxymonosulfate-assisted electro-oxidation/ coagulation coupled with ceramic membrane for manganese and phosphorus removal in surface water[J]. Chemical Engineering Journal, 2019, 365: 334-343. doi: 10.1016/j.cej.2019.02.028 [28] LEE M, MERLE T, RENTSCH D, et al. Abatement of polychoro-1, 3-butadienes in aqueous solution by ozone, UV-photolysis, and advanced oxidation processes (O3/H2O2 and UV/H2O2)[J]. Environmental Science & Technology, 2017, 51(1): 497-505. [29] CHEN L, CAI T, CHENG C, et al. Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: A comparative study[J]. Chemical Engineering Journal, 2018, 351: 1137-1146. doi: 10.1016/j.cej.2018.06.107 [30] MOREIRAF C, BOAVENTURA R A R, BRILLASRILLAS E, et al. Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters[J]. Applied Catalysis B:Environment, 2017, 202: 217-261. doi: 10.1016/j.apcatb.2016.08.037 [31] ZHANG M, DONG H, ZHAO L, et al. A review on Fenton process for organic wastewater treatment based on optimization perspective[J]. Science of the Total Environment, 2019, 670: 110-121. doi: 10.1016/j.scitotenv.2019.03.180 [32] 魏复盛. 水和废水监测分析方法(第4版)[M]. 北京: 中国环境科学出版社, 2002. [33] BRIDGEMAN J, BIEROZA M, BAKERAKER A. The application of fluorescence spectroscopy to organic matter characterisation in drinking water treatment[J]. Reviews in Environmental Science & Biotechnology, 2011, 10: 277. [34] KAVURMACI S S, BEKBOLET M. Specific UV-vis absorbance changes of humic acid in the presence of clay particles during photocatalytic oxidation[J]. Desalination & Water Treatment, 2014, 52: 1903-1910. [35] KE W, LI W, GONG X J, LI Y, et al. Spectral study of dissolved organic matter in biosolid during the composting process using inorganic bulking agent: UV-vis, GPC, FTIR and EEM[J]. International Biodeterioration & Biodegradation, 2013, 85: 617-623. [36] WIN M S, TIAN Z, ZHAO H, XIAO K, et al. Atmospheric HULIS and its ability to mediate the reactive oxygen species (ROS): A review[J]. Journal of Environmental Science, 2018, 71: 13-31. doi: 10.1016/j.jes.2017.12.004 [37] SOOMRO G S, QU C, REN N, et al. Efficient removal of refractory organics in landfill leachate concentrates by electrocoagulation in tandem with simultaneous electro-oxidation and in-situ peroxone[J]. Environmental Research, 2020, 183: 109249. doi: 10.1016/j.envres.2020.109249 [38] LIU X, NOVAK J T, HE Z. Removal of landfill leachate ultraviolet quenching substances by electricity induced humic acid precipitation and electrooxidation in a membrane electrochemical reactor[J]. Science of Total Environment, 2019, 689: 571-579. doi: 10.1016/j.scitotenv.2019.06.329 [39] HE P J, XUE J F, SHAO L M, et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill[J], Water Research, 2006, 40(7): 1465-1473. [40] LONG Y Y, XU J, SHEN D S, et al. Effective removal of contaminants in landfill leachate membrane concentrates by coagulation[J]. Chemosphere, 2017, 167: 512-519. doi: 10.1016/j.chemosphere.2016.10.016 [41] SONIA R G B, JORGE N, WAGNER J B. Origin of dissolved organic carbon studied by UV-vis spectroscopy[J]. Acta Hydrochim. Hydrobiol, 2003, 31(6): 513-518. doi: 10.1002/aheh.200300510 [42] 林星杰, 杨慧芬, 宋存义. UV254在水质监测中应用的研究[J]. 能源与环境, 2006(10): 22-24. [43] 刘国强. 垃圾渗滤液中DOM 特性分析及去除性能研究[D]. 重庆: 重庆大学, 2007. [44] MARTA F, GUSTAVO G, JOSE M. The usefulness of UV-visible and fluorescence spectroscopies to study the chemical nature of humic substances from soils and composts[J]. Organic Geochemistry, 2006, 27: 1949-1959. [45] KANG K H, SHIN H S, PARK H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications[J]. Water Research, 2002, 36(16): 4023-4032. doi: 10.1016/S0043-1354(02)00114-8 [46] HE P J, XUE J F, SHAO L M, et al. Dissolved organic matter (DOM) in recycled leachate of bioreactor landfill[J]. Water Research, 2006, 40(7): 1465-1473. doi: 10.1016/j.watres.2006.01.048 [47] 何小松, 席北斗, 魏自民, 等. 堆放垃圾渗滤液水溶性有机物的荧光特性[J]. 中国环境科学, 2010, 30(6): 752-757. [48] ZHANG Q Q, TIAN B H, ZHANG X, et al. Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants[J]. Waste Management, 2013, 33(11): 2277-2286. doi: 10.1016/j.wasman.2013.07.021 [49] HUO S, BEIDOU X I, HAICHAN Y U, et al. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages[J]. Journal of Environmental Sciences, 2008, 20(4): 492-498. doi: 10.1016/S1001-0742(08)62085-9 [50] CHEN W M, HE C, ZHUO X C, et al. Comprehensive evaluation of dissolved organic matter molecular transformation in municipal solid waste incineration leachate[J]. Chemical Engineering Journal, 2020, 400: 126003-126010. doi: 10.1016/j.cej.2020.126003 [51] CHEN W M, WANG F, HE C, et al. Molecular-level comparison study on microwave irradiation-activated persulfate and hydrogen peroxide processes for the treatment of refractory organics in mature landfill leachate[J]. Journal of Hazardous Materials, 2020, 397: 122785. doi: 10.1016/j.jhazmat.2020.122785 [52] WANG F, GU Z P, HU Y S, et al. Split dosing of H2O2 for enhancing recalcitrant organics removal from landfill leachate in the Fe0/H2O2 process: Degradation efficiency and mechanism[J]. Separation and Purification Technology, 2021, 278: 119564. doi: 10.1016/j.seppur.2021.119564 [53] OHNO T, CHOROVER J, OMOIKE A, et al. Molecular weight and humification index as predictors of adsorption for plant and manure derived dissolved organic matter to Goethite[J]. European Journal of Soil Science, 2007, 58(1): 125-132. doi: 10.1111/j.1365-2389.2006.00817.x [54] OHNO T. Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter[J]. Environmental Science & Technology, 2002, 36(4): 742-746. [55] JOHNSON M S, COUTO E G, ABDO M, et al. Fluorescence index as an indicator of dissolved organic carbon quality in hydrologic flowpaths of forested tropical watersheds[J]. Biogeochemistry, 2011, 105(1/2/3): 149-157.