-
关闭矿井蕴藏着丰富的地热资源[1]。有研究[2-4]表明,温度超过18 ℃的矿井水即可进行有效热量利用。闭坑矿井水抽出处理并开发利用地热资源可以实现矿井水源地热利用、闭坑矿井水污染控制与水资源利用的多重意义。国际上现有的先导实验和示范工作研究表明矿井水质不仅可以指示地热异常,也可影响地热开采的连通性,还会带来集热装置的化学腐蚀和结垢问题从而影响水热联用系统稳定、持续运行,故明确其成因及动态是争取技术支持机制需迫切解决的问题[5-10]。闭坑矿井水通常呈现酸性、高铁、高硫酸盐、高矿化度等特征[11-12],已有研究[13-16]表明,矿井水中的悬浮物、铁、钙、镁离子等会造成换热系统的腐蚀、结垢和堵塞,故针对矿井水中的典型污染物,综合考虑水热利用中热能获取,开展协同处理,实现闭坑矿井水水质保障是关闭煤矿水热联用的关键工艺。前期调查发现,我国闭坑矿井水污染问题突出且矿井水源地热需求区,如鲁西、山西等区[17-18]矿井水多呈现酸性高铁特征。闭坑AMD水热利用中矿井水通常采用中和、混凝沉淀和吸附等处理后达到换热装置水质标准[19-20]。本研究基于实例模拟,在酸性高铁矿井水的抽采-预处理-集热-深度处理-排放与资源化利用总体工艺架构下,针对高温矿井水中和-絮凝-沉淀处理中的关键要素与变化规律,开展矿井水质保障协同处理研究,揭示了关闭煤矿水热利用中水质调控关键参数与温度响应特征。
闭坑煤矿水热利用的水质保障与处理模拟
Simulation on water quality guarantee and treatment for hydrothermal utilization of closed coal mine
-
摘要: 闭坑煤矿水热联用为煤矿区实施双碳战略的重要举措之一,其水热利用过程中最大挑战之一为集热装置的堵塞腐蚀问题。本文以常见的闭坑酸性高铁矿井水为例,采用中和-强化絮凝沉淀的处理工艺,以CaO为中和剂、聚合氯化铝(PAC)为絮凝剂、聚丙烯酰胺(PAM)为助凝剂,研究高温矿井20-50 ℃水温下水质调控关键参数与温度响应特征。实验表明,水温在30 ℃时,水中总Fe和Fe2+去除效率可达最高,温度高于30 ℃不利于Fe2+的充分氧化,温度过低不利于Fe3+的水解,采用1.23 g·L−1 CaO+20 mg·L −1 PAC+3 mg·L −1 PAM的药剂组合可以使出水总Fe含量低于0.3 mg·L−1;利用分形方法分析了高温矿井水絮凝反应中絮体形态与温度变化的响应关系,温度过低或过高时,形成的絮体细密松散;30 ℃时絮凝反应中絮体的分形维数1.41增长到1.92,此刻分形维数增长速率最大,絮体结构大且紧实,絮体沉降速度增快,絮凝效果最佳;30 ℃下反应投入的CaO放热速率大于温度自然流失的速率,反应后综合温度呈上升趋势。当温度大于30 ℃时,絮体分形维数变化无定势,温度影响矿井水絮凝降污效率。闭坑煤矿水热联用中水质保障处理模拟为闭坑矿井水热联用的水质调控提供科学依据。Abstract: Utilization of water together with thermal resource in closed coal mines is one of the important measures to implement the dual-carbon strategy in coal mines. One of the biggest challenges in the utilization of hydrogeothermal energy in closed coal mines is the blockage and corrosion of heat collectors and transfers due to water quality of mine drainage. In this study, the high-iron acid mine drainage(AMD) was taken as an example, which usually occurred in closed coal mine of China. The treatment process of neutralization-intensified flocculation and precipitation was used with CaO neutralizer, polyaluminum chloride (PAC) coagulant, and polyacrylamide (PAM) coagulant aid. The key parameters of water quality regulation at 20~50 ℃water temperature and temperature response characteristic in hot coal mine were studied. Experiments showed that the removal efficiencies of total Fe and Fe2+ in water could reach the highest values at the water temperature of 30 ℃, water temperature higher than 30 ℃ was not conducive to the full oxidation of Fe2+, and too low temperature was not suitable for the hydrolysis of Fe3+. The treatment chemical package of 1.23 g·L−1 CaO+20 mg·L−1 PAC+3 mg·L−1 PAM could lead to the total Fe content of the effluent lower than 0.3 mg·L −1. The fractal method was used to analyze the synergistic relationship between floc morphology and temperature change. If the temperature was too low or too high, the floc formed was fine and loose; the floc fractal dimension increased from 1.41 to 1.92 in the flocculation reaction at 30 ℃, meanwhile the growth rate of the fractal dimension was the largest, and the floc structure was large and compact, the sedimentation speed of the flocs increased, and the flocculation effect was the best; at 30 ℃, the heat release rate of the CaO dosing in the reaction was greater than the natural loss rate of the temperature, and the comprehensive temperature after the reaction showed an upward trend. When the temperature was higher than 30 ℃, the change of floc fractal dimension presented no fixed trend and the temperature affected the efficiency of mine drainage flocculation and pollution treatment. Simulation on water quality guarantee treatment for hydrothermal utilization provides a scientific basis for water quality regulation of hydrothermal combined utilization in closed coal mines.
-
-
[1] 武强, 申建军, 王洋. “煤-水”双资源型矿井开采技术方法与工程应用[J]. 煤炭学报, 2017, 42(1): 8-16. [2] 刘建功. 煤矿低温热源利用技术研究与应用[J]. 煤炭科学技术, 2013, 41(4): 124-128. [3] 罗景辉, 韩子辰, 熊楚超, 等. 赵固煤矿低温余热利用系统优化设计[J]. 煤炭工程, 2022, 54(2): 31-36. [4] 刘小明, 张杰文, 刘怀江, 等. 基于热泵技术的煤矿清洁采暖及井下冷源配送技术在梅花井煤矿的应用[J]. 工矿自动化, 2021, 47(S1): 131-134. [5] LUISA F, CABEZA, ARAN SOLE, et al. Review on sorption materials and technologies for heat pumps and thermal energy storage[J]. Renewable Energy, 2017, 110: 3-39. doi: 10.1016/j.renene.2016.09.059 [6] BAO T, LIU Z, MELDRUM J, et al. Field tests and multiphysics analysis of a flooded shaft for geothermal applications with mine water[J/OL][J]. Energy Conversion and Management, 2018, 169: 174-185. doi: 10.1016/j.enconman.2018.05.065 [7] ALAN M. JESSOP, JACK K. MACDONALD, HOWARD SPENCE. Clean Energy from Abandoned Mine at Springhill, Nova Scotia[J]. Energy Sources, Taylor& Francis, 1995, 17(1): 93-106. [8] BANKS D, ATHRESH A, AL-HABAIBEH A, et al. Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom[J]. Sustainable Water Resources Management, 2019, 5(1): 29-50. doi: 10.1007/s40899-017-0094-7 [9] ANDRES C, ORDONEZ A, ÁLVAREZ R. Hydraulic and Thermal Modelling of an Underground Mining Reservoir[J/OL][J]. Mine Water and the Environment, 2017, 36(1): 24-33. doi: 10.1007/s10230-015-0365-1 [10] BURNSIDE N M, BANKS D, BOYCE A J, et al. Hydrochemistry and stable isotopes as tools for understanding the sustainability of minewater geothermal energy production from a ‘standing column’ heat pump system: Markham Colliery, Bolsover, Derbyshire, UK[J/OL][J]. International Journal of Coal Geology, 2016, 165: 223-230. doi: 10.1016/j.coal.2016.08.021 [11] 孙亚军, 徐智敏等. 我国煤矿区矿井水污染问题及防控技术体系构建[J]. 煤田地质与勘探, 2021, 49(5): 1-16. [12] 孙亚军, 陈歌, 徐智敏等. 我国煤矿区水环境现状及矿井水处理利用研究进展[J]. 煤炭学报, 2020, 45(1): 304-316. [13] 潘俊, 宋佳蓉, 叶梦星. 地下水源热泵铁锰化学堵塞试验[J]. 沈阳建筑大学学报(自然科学版), 2017, 33(5): 953-960. [14] PAVELIC P, VANDERZALM J, DILLON P, et al. Assessment of the potential for well clogging associated with salt water interception and deep injection at chowila, SA(R). Final report to department of water, Land: Biodiversity and Conservation, 2007. [15] 李璐, 卢文喜, 杜新强等. 人工回灌过程中含水层堵塞试验研究[J]. 人民黄河, 2010, 32(6): 77-78. [16] 毕海洋, 端木琳, 朱颖心. 直流式水源利用中要解决的关键问题和研究进展[J]. 暖通空调, 2007, 200(7): 27-30. [17] 吴涛. 我国废弃煤矿矿井水的分布及开发利用方向探讨[J]. 煤炭与化工, 2020, 43(1): 49-53. [18] 李福勤, 高珊珊, 薛甜丽等. 煤矿酸性矿井水处理技术研究进展[C]//. 2021年全国能源环境保护技术论坛论文集. 2021: 51-56. [19] HULL, E J. ZODROW, K. R. Acid rock drainage treatment using membrane distillation: impacts of chemical-free pretreatment on scale formation, pore wetting, and product water quality[J]. Environmental Science and Technology, 2017, 51: 20,11928-11934. [20] PRASAD B, KUMAR H. Treatment of acid mine drainage using a fly ash zeolite column[J/OL][J]. Mine Water and the Environment, 2016, 35(4): 553-557. doi: 10.1007/s10230-015-0373-1 [21] 冯启言, 周来. 废弃矿井地下水污染风险评价与控制[M]. 北京: 中国环境出版社, 2015. [22] 范泽文, 和丽萍, 徐西蒙等. 煤矿酸性矿井水中Fe~(2+)处理试验研究[J]. 洁净煤术, 2014, 20(4): 103-105. [23] 郑彭生, 杨建超, 郭中权等. 酸性矿井水中和-絮凝沉淀除铁试验研究[J]. 能源环境保护, 2019, 33(5): 36-38. [24] LI X Y, LOGAN B E. Permeability of fractal aggregates[J]. Water Research, 2001, 35(14): 3373-3380. doi: 10.1016/S0043-1354(01)00061-6