-
偶氮染料、蒽醌染料和三苯甲烷类染料是使用量较多的染料,而结晶紫(crystal violet,CV)是应用较为广泛的三苯甲烷类染料,具有消毒杀菌效果好和染色效果好等优点,因而应用范围涉及医学消毒和纺织染色等领域[1]。但结晶紫可被氧化反应而产生具有致突变、致畸和致癌作用的有毒代谢物,对动物和人类健康产生不利影响。结晶紫分子的结构复杂,分子质量较大,导致该类废水可生化性差,难以生物处理。徐圣东等[2]利用猴头菌初提纯漆酶对结晶紫进行降解,在反应24 h时,结晶紫的降解率仅为27.3%。混凝法是目前应用较为传统的处理工艺,而聚丙烯酰胺是混凝法中常用的助凝剂[3]。陈新[4]将自制阴离子聚丙烯酰胺用于结晶紫脱色,当混凝剂投加量为30 mg·L−1,初始pH为9,结晶紫浓度为20 mg·L−1最佳条件下,最高结晶紫脱色率仅为57.5%,说明混凝难以去除结晶紫。
高级氧化技术可以产生强氧化性的自由基,在难降解废水中的研究已经受到了广泛的关注。臭氧和过硫酸盐高级氧化技术是目前的研究热点。但也存在臭氧耗电量大、过硫酸盐会引入硫酸根离子等问题[5]。四氧化三铁表面的Fe(Ⅱ)和Fe(Ⅲ)之间的转换可以在八面体结构相同的位置进行,因此被认为是臭氧和过硫酸盐的有效催化剂,可以减少臭氧和过硫酸盐的使用[6-7]。四氧化三铁本身具有的磁性也能使得它易被磁力分离,因此易于被回收利用。目前关于臭氧/过硫酸盐[8-9]、臭氧/催化剂[10-11]和过硫酸盐/催化剂[12-13]工艺的研究已有许多报道,但关于臭氧/过硫酸盐/催化剂工艺的研究并不多,同时该工艺中引入了较多的变量,因此变量间的交互效应是需要重点考虑的问题。
本研究通过对比臭氧/过硫酸盐/四氧化三铁(O3/PDS/Fe3O4)与其他3种子体系的结晶紫降解能力,考察臭氧流量、过硫酸盐浓度和四氧化三铁浓度和pH对结晶紫降解的影响;基于响应面法建立各操作条件与结晶紫降解率的多元二次回归模型,分析各因素之间交互效应的程度,并对O3/PDS/Fe3O4工艺降解结晶紫的操作参数进行优化,确定最优工艺条件;利用SEM、Raman和FT-IR表征Fe3O4反应前后的变化,使用EPR技术直接鉴定降解工艺过程中产生的自由基,探索O3/PDS/Fe3O4工艺的催化反应机理,以期为结晶紫废水的深度处理提供理论参考。
基于响应曲面法优化的臭氧/过硫酸盐/四氧化三铁工艺对结晶紫的降解
Optimization of crystal violet degradation in ozone/persulfate/ferroferric oxide system by response surface methodology
-
摘要: 为有效去除水中结晶紫,利用臭氧/过硫酸盐/四氧化三铁工艺对结晶紫的氧化效果进行研究,设计单因素实验探索臭氧流量、过硫酸盐浓度、四氧化三铁浓度和pH对结晶紫降解的影响,依据响应曲面法的Box-Behnken Design(BBD)实验设计原理,探究臭氧流量、过硫酸盐浓度、四氧化三铁浓度和反应时间对降解效果的影响,并优化工艺参数;使用SEM-EDS、FT-IR和Raman表征了反应前后的四氧化三铁,并用EPR技术直接鉴定出工艺过程中的活性氧。结果表明:此工艺在较宽的pH区间(3~11)都具有较高的结晶紫降解能力,臭氧流量、过硫酸盐浓度和四氧化三铁浓度与结晶紫的降解率成正比;臭氧流量1.000 L·min−1,过硫酸盐浓度0.968 mmol·L−1,四氧化三铁浓度2.158 mmol·L−1,反应时间41.702 min为预测的最佳工艺条件;在最佳工艺条件下得到的实际降解率与预测降解率相对偏差仅为−1.12%;催化反应后Fe3O4粒径减小,表面变得更加光滑;反应后的Fe3O4的铁元素质量分数由48.24%降至35.31%,而氧和硫元素质量分数由34.05%和0.39%分别增至37.59%和1.09%;臭氧/过硫酸盐/四氧化三铁工艺过程中存在SO4·–和·OH。由此可知,BBD优化模型预测与实际处理效果基本一致。该研究成果为可为难降解的结晶紫废水的深度处理提供参考。Abstract: In order to effectively remove crystalline violet from water, the ozone/persulfate/ferroferric oxide process was used to investigate the effects of ozone flow rate, persulfate concentration, ferroferric oxide concentration and pH on the degradation of crystalline violet, then the Box-Behnken Design (BBD) experimental design principle of response surface method was used to determine the effects of ozone flow rate, persulfate concentration, ferroferric oxide concentration and reaction time on the degradation of crystalline violet and optimize the process parameters. The tetroxide before and after the reaction was characterized by SEM-EDS, FT-IR and Raman, and the reactive oxygen species in the process was identified directly by EPR technique. The results showed that this process had a good ability on crystalline violet degradation over a wide pH range (3~11), and the ozone flow rate, persulfate concentration and tetroxide concentration were proportional to the degradation rate of crystalline violet. The model predicted that the optimum process conditions were following: ozone flow rate of 1.000 L·min−1, persulfate concentration of 0.968 mmol·L−1, ferroferric oxide concentration of 2.158 mmol·L−1, and reaction time of 41.702 min. The relative deviation of the actual degradation rate from the predicted degradation rate under the optimum conditions was only −1.12%. After the catalytic reaction, the particle size of Fe3O4 decreased and its surface became smoother, the mass fraction of Fe3O4 decreased from 48.24% to 35.31%, while the mass fractions of oxygen and sulfur increased from 34.05% and 0.39% to 37.59% and 1.09%, respectively. SO4·– and ·OH occurred in the ozone/persulfate/ferroferric oxide process. It can be seen that the prediction of BBD optimization model is basically consistent with the actual treatment effect; this study can provide a reference for the deep treatment of refractory crystalline violet wastewater.
-
Key words:
- response surface /
- ozone /
- persulfate /
- ferroferric oxide /
- crystal violet
-
表 1 不同工艺过程中结晶紫降解的伪一级动力学和伪二级动力学
Table 1. Pseudo-first-order kinetics and pseudo-second-order kinetics for crystal violet degradation of in different systems
反应体系 伪一级动力学 伪二级动力学 拟合方程 拟合系数 拟合方程 拟合系数 O3/PDS/Fe3O4工艺 −ln(Ct/C0)=0.032 65t 0.929 37 $1/C_t- 1/C_0=0.003 \;44t$ 0.984 80 O3/Fe3O4工艺 −ln(Ct/C0)=0.021 23t 0.934 23 $1/C_t- 1/C_0=0.001\; 73t$ 0.973 36 PDS/Fe3O4工艺 −ln(Ct/C0)=0.023 00t 0.914 68 $1/C_t- 1/C_0=0.001 \;89t$ 0.955 70 O3/PDS工艺 −ln(Ct/C0)=0.023 98t 0.940 85 $1/C_t- 1/C_0=0.002 \;14t$ 0.980 71 表 2 实验因素和水平
Table 2. Experimental factors and levels
水平 因素 臭氧流量X1/(L·min−1) 过硫酸盐浓度X2/(mmol·L−1) 四氧化三铁浓度X3/(mmol·L−1) 反应时间X4/min −1 0.6 0.4 2 20 0 0.8 0.7 3 40 1 1.0 1.0 4 60 表 3 实验设计及结果
Table 3. Experimental design and results
序号 臭氧流量/
(L·min−1)过硫酸
盐浓度/
(mmol·L−1)四氧化
三铁浓度/
(mmol·L−1)反应时
间/min实际
值/%预测
值/%1 0.8 0.7 3 40 78.25 77.76 2 0.8 0.4 3 60 79.80 80.40 3 1.0 1.0 3 40 88.15 88.63 4 0.6 0.7 3 60 80.90 81.81 5 0.8 0.4 4 40 75.50 75.41 6 0.8 1.0 2 40 82.15 82.03 7 0.8 0.7 3 40 78.15 77.76 8 0.6 1.0 3 40 80.2 80.76 9 0.8 0.7 3 40 78.10 77.76 10 0.8 1.0 4 40 80.6 80.62 11 0.6 0.7 4 40 75.95 75.34 12 1.0 0.7 4 40 85.85 85.50 13 0.8 0.7 4 20 72.55 72.77 14 0.8 0.4 3 20 71.25 71.84 15 1.0 0.7 3 20 83.3 83.42 16 0.8 0.7 3 40 77.25 77.76 17 0.8 0.7 3 40 78.05 77.76 18 0.6 0.7 3 20 69.55 70.28 19 1.0 0.7 3 60 88.70 89.00 20 1.0 0.7 2 40 86.85 86.92 21 0.8 1.0 3 60 85.85 85.61 22 0.8 0.7 2 60 82.95 82.75 23 0.6 0.4 3 40 73.80 73.26 24 0.8 0.4 2 40 76.75 76.83 25 1.0 0.4 3 40 86.35 85.72 26 0.8 0.7 2 20 73.55 74.19 27 0.8 1.0 3 20 77.75 77.05 28 0.8 0.7 4 60 81.10 81.33 29 0.6 0.7 2 40 77.80 76.75 表 4 方差分析
Table 4. Analysis of variance
方差
来源平方
和自由
度均方 F值 P值 显著性 模型 711.54 8 88.94 254.35 <0.000 1 非常显著 X1 310.08 1 310.08 886.73 <0.000 1 非常显著 X2 81.38 1 81.38 232.72 <0.000 1 非常显著 X3 6.02 1 6.02 17.22 0.000 5 非常显著 X4 219.74 1 219.74 628.37 <0.000 1 非常显著 X1X2 5.29 1 5.29 15.13 0.000 9 非常显著 X1X4 8.85 1 8.85 25.31 <0.000 1 非常显著 X12 78.41 1 78.41 224.23 <0.000 1 非常显著 X22 6.42 1 6.42 18.35 0.000 4 非常显著 残差 6.99 20 0.35 失拟项 6.34 16 0.40 2.43 0.202 0 不显著 纯误差 0.65 4 0.16 总离差 718.54 28 -
[1] 徐圣东, 周金洋, 王丽, 等. 猴头菌和金针菇漆酶对不同染料的降解[J]. 菌物学报, 2021, 40(6): 1525-1537. [2] 陈智超, 陈坤, 杨承峰, 等. 磁混凝工艺在山东某污水处理厂提标改造中的应用[J]. 工业水处理, 2023, 43(3): 181-185. [3] 陈新. 阴离子聚丙烯酰胺P(AM-IA-AMPS)的制备及应用研究[D]. 重庆: 重庆大学, 2019. [4] 刘汝鹏, 宋依辉, 陈飞勇, 等. 水动力传质在臭氧氧化水处理工艺的研究进展[J]. 净水技术, 2023, 42(2): 14-22. [5] GUO H, LI Z, XIANG L, et al. Efficient removal of antibiotic thiamphenicol by pulsed discharge plasma coupled with complex catalysis using nanocomposites[J]. Journal of Hazardous Materials, 2021, 403: 123673. [6] HU L, WANG P, LIU G, et al. Catalytic degradation of p-nitrophenol by magnetically recoverable Fe3O4 as a persulfate activator under microwave irradiation[J]. Chemosphere, 2020, 240: 124971-124977. [7] 冯华良, 毛文龙, 王晓君, 等. 不同臭氧催化氧化体系处理老龄垃圾渗滤液的效果及能耗分析[J]. 环境工程学报, 2020, 14(10): 2689-2700. [8] 刘汝鹏, 张震, 宋依辉, 等. 基于臭氧的复合工艺处理医药废水研究进展[J]. 工业水处理, 2022, 42(5): 41-49. [9] 刘东坡, 陈伟锐, 王静, 等. 铁锌共掺杂MCM-41构建双酸性中心及其催化臭氧化布洛芬[J]. 环境工程学报, 2022, 16(9): 2850-2861. [10] 刘汝鹏, 张震, 孙翠珍, 等. 非均相催化臭氧化水中药物与个人护理品的研究进展[J]. 精细化工, 2022, 39(3): 469-479. [11] 张震, 刘汝鹏, 孙翠珍, 等. 铁基材料协同活化过硫酸盐研究进展[J]. 环境科学与技术, 2022, 45(9): 169-180. [12] 谭凤训, 陈永凯, 王榕, 等. g-C3N4/PDS光催化降解阿特拉津的效能及机理研究[J]. 中国给水排水, 2023, 39(1): 91-98. [13] AMR S, AZIZ H A, ADLAN M N. Optimization of stabilized leachate treatment using ozone/persulfate in the advanced oxidation process[J]. Waste Management, 2013, 33(6): 1434-1441. [14] WEN G, QIANG C, FENG Y, et al. Bromate formation during the oxidation of bromide-containing water by ozone/peroxymonosulfate process: Influencing factors and mechanisms[J]. Chemical Engineering Journal, 2018, 352: 316-324. [15] YIN R, GUO W, ZHOU X, et al. Enhanced sulfamethoxazole ozonation based on magnetic Fe3O4 nanoparticles by noble-metal-free catalysis: Catalytic performance and degradation mechanism[J]. RSC Advances, 2016, 6(23): 19265-19270. [16] QI F, CHU W, XU B. Ozonation of phenacetin in associated with a magnetic catalyst CuFe2O4: The reaction and transformation[J]. Chemical Engineering Journal, 2015, 262: 552-562. [17] ZHENG H, DU J, ZHONG H, et al. Enhanced persulfate activation by sulfur-modified Fe3O4 composites for atrazine degradation: Performance and mechanism[J]. Process Safety and Environmental Protection, 2023, 170: 1052-1065. [18] BAI Z, YANG Q, WANG J. Catalytic ozonation of sulfamethazine using Ce0.1Fe 0.9OOH as catalyst: Mineralization and catalytic mechanisms[J]. Chemical Engineering Journal, 2016, 300: 169-176. [19] BAI Z Y, YANG Q, WANG J L. Fe3O4/multi-walled carbon nanotubes as an efficient catalyst for catalytic ozonation of p-hydroxybenzoic acid[J]. International Journal of Environmental Science and Technology, 2015, 13: 483-492. [20] 刘静, 杨璐冰, 李晨, 等. ML-WO3/TiO2异质结的制备及其对罗丹明B的光催化降解[J]. 精细化工, 2022, 39(12): 2456-2466. [21] ABDI M, BALAGABRI M, KARIMI H, et al. Degradation of crystal violet (CV) from aqueous solutions using ozone, peroxone, electroperoxone, and electrolysis processes: A comparison study[J]. Applied Water Science, 2020, 10(7): 1-10. [22] CASTRO J, PAZ S, MENA N, et al. Evaluation of heterogeneous catalytic ozonation process for diclofenac degradation in solutions synthetically prepared[J]. Environmental Science and Pollution Research, 2019, 26(5): 4488-4497. [23] GUO W, REN N, WANG X, et al. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology[J]. Bioresource Technology, 2009, 100(3): 1192-1196. [24] GRCIC I, VUJEVIC D, AEPCIC J, et al. Minimization of organic content in simulated industrial wastewater by Fenton type processes: A case study[J]. Journal of Hazardous Materials, 2009, 170(2): 954-961. [25] ZINATIZADEH A, MOHAMED A R, ABDULLAH A Z, et al. Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM)[J]. Water Research, 2006, 40(17): 3193-3208. [26] MICHAELIS M, LEOPOLD C S. A measurement system analysis with design of experiments: Investigation of the adhesion performance of a pressure sensitive adhesive with the probe tack test[J]. International Journal of Pharmaceutics, 2015, 496(2): 448-456. [27] KHATAEE A R, FATHINIA R, ABER R, et al. Optimization of photocatalytic treatment of dye solution on supported TiO2 nanoparticles by central composite design: Intermediates identification[J]. Journal of Hazardous Materials, 2010, 181(1/2/3): 886-897. [28] CHRISTIE T C, SUNDARAMURTHY J, KALAIVANI M. Electrospun α-Fe2O3 nanorods as a stable, high capacity anode material for Li-ion batteries[J]. Journal of Materials Chemistry, 2012, 22: 12198-12204. [29] TRPKOV D, PANIAN M, KOPANJA L, et al. Hydrothermal synthesis, morphology, magnetic properties and self-assembly of hierarchical α-Fe2O3 (hematite) mushroom-, cube- and sphere-like superstructures[J]. Applied Surface Science, 2018, 457: 427-438. [30] KACZMARCZYK J, ZASADA F, JANAS J, et al. Thermodynamic stability, redox properties, and reactivity of Mn3O4, Fe3O4, and Co3O4 model catalysts for N2O decomposition: Resolving the origins of steady turnover[J]. ACS Catalysis, 2016, 6(2): 1235-1246. [31] LIN X, WANG X, ZHOU Q, et al. Magnetically recyclable MoS2/Fe3O4 hybrid composite as visible light responsive photocatalyst with enhanced photocatalytic performance[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1673-1682. [32] XIAO F, WANG Y, XIE X, et al. Preparation of Fe/C-Mt composite catalyst and ofloxacin removal by peroxymonosulfate activation[J]. Separation and Purification Technology, 2022, 298: 121548. [33] KREHULA S, MUSIC S, SKOKO Z, et al. The influence of Zn-dopant on the precipitation of α-FeOOH in highly alkaline media[J]. Journal of Alloys and Compounds, 2006, 420(1): 260-268.