-
氟是自然界的微量元素之一,氟在自然界中以萤石(CaF2)、冰晶石、氟磷灰石等形式存在,这些矿物埋藏在地下,随着地下水的侵蚀与沉积,F−被溶出并富集至地下水中,使得水中的F−浓度偏高。我国高氟水分布十分广泛,尤其集中在北方地区,比如辽宁省中部,山东省西南部,围绕渤海地区以及广袤的西北地区都有大面积的高氟地下水区域,这些含氟地下水不仅给当地居民的饮水带来诸多不便,而且会给当地的基础建设和经济发展带来阻碍,根据资料显示:氟与人体的身体健康密切相关,人体每天需要摄取的氟含量大约为0.1 mg,大约90%摄入的氟会随身体新陈代谢排除体外,留下的大部分氟会存在于身体的骨骼和牙齿之中,人体摄入氟的最主要途径是饮食,这也是地方性氟中毒的主要原因,因此需要确保饮用水氟安全,过量摄入氟化物会导致人体骨骼、牙齿、肝脏、肾脏、大脑等的多器官毒性[1],目前仍缺乏有效的治疗手段,除氟技术可以有效解决饮用水中氟含量超标的问题。
目前国内主要的除氟方法有吸附法[2]、混凝沉淀法[3]、离子交换法[4]、反渗透[5]等,吸附法由于其方法便捷、经济高效等原因是目前饮用水除氟的主要方式。目前主要的吸附剂有铝基金属材料、天然矿石材料等, SANINI等[6]利用CeO2改性活性氧化铝来去除水中氟离子; AYALEW 等[7]比较了高岭土和石灰石吸附剂对地下水中的除氟效果;LAONAPAKUL等[8]通过煅烧高岭土/羟基磷灰石复合材料来吸附除氟;THIRUNAVUKKARASU等[9]对生物吸附做了系统性探讨,阐述了生物吸附未来前景和发展潜力;AMIN等[10]利用白腐菌杏鲍菇来吸附水溶液中的氟;韩晓峰等[11]采用浸渍法制备了负载镧镁的活性氧化铝吸附剂,该吸附剂在3 h内可将10 mg·L−1的含氟溶液中的氟离子去除95%左右;BAKHTA等[12]利用通过金属浸渍改性活性炭可提高其吸附性能,是一种很有前途的水处理材料。目前研究报道的大多数吸附剂存在以下缺点:1)吸附量不足,吸附效率不能满足人们的需求。2)抗干扰离子能力弱,选择性差。3) pH适宜范围窄,尤其是生物吸附剂,水相pH对吸附剂吸附性能有很大影响,一般pH越低,除氟性能越好4)材料获取困难,制作过程复杂。5)铝基金属吸附材料会有Al3+溶出的问题,不仅会造成2次污染,而且长期饮用含高铝离子的水会给人体带来危害。因此选择一种高效、安全的饮用水除氟剂是吸附法的关键。
MgO作为我国储量很大的金属氧化物,具有高吸附能力、强亲和力、热稳定性,是一种十分安全并具有发展潜力的吸附除氟材料。刘理华等[13]研究了棒状改性氧化镁及其吸附性能,发现经过改性后的氧化镁有良好的吸附活性;王慧玲等[14]利用酸改性活性氧化镁,改性后吸附容量有所提高。本实验为了提高活性氧化镁的吸附容量和吸附效率,扩充活性氧化镁适宜pH的范围,增强活性氧化镁与其他离子共存时的吸附能力,提高其选择性和除氟稳定性,以活性氧化镁作为多孔性载体,通过铁盐,钙盐浸渍使其附着在多孔性载体上或者内表面,再通过焙烧制得改性吸附剂,探讨其最佳制备条件,并通过扫描电镜,X射线粉末衍射仪,傅里叶变换红外光谱仪对吸附剂进行表征。
金属盐改性活性氧化镁对饮用水中氟离子的去除性能
Removal performance of metal salt modified active magnesium oxide on fluoride ions in drinking water
-
摘要: 饮用水中氟含量超标会损害人体的健康,本研究研制了一种改性吸附剂用于去除饮用水中过量的氟离子。本研究采用浸渍,焙烧的方法将金属盐负载到活性氧化镁上,制备改性活性氧化镁,考察了其除氟效果和吸附除氟的主要影响因素。结果表明,经过钙盐,铁盐改性后的活性氧化镁最大吸附容量显著增加,在复杂水体环境中仍有突出的除氟效果;改性吸附剂适宜pH为3~10;金属盐改性活性氧化镁处理水样不会有Mg2+和浸渍盐离子溶出,是一种安全可靠的吸附除氟材料。Abstract: Excessive fluoride content in drinking water can harm human health. In this study, a modified adsorbent was developed to remove excessive fluoride ions from drinking water. The impregnation and calcination methods were used to load metal salts onto activated magnesium oxide for the preparation of modified activated magnesium oxide. The fluoride removal effect and the main influencing factors were studied. The results showed that the maximum adsorption capacity of activated magnesium oxide modified with calcium and iron salts significantly increased, and it still had outstanding fluoride removal effects in complex water environments; The pH values of 3~10 were suitable for the modified adsorbent; Metal salt modified active magnesium oxide treatment of water samples did not release Mg2+ and immersion salt ions, it is a type of safe and reliable material for adsorption and fluoride removal.
-
表 1 吸附剂的Langmuir和Freundlich等温吸附模型拟合参数
Table 1. Fitting parameters of Langmuir and Freundlich isothermal adsorption models for adsorbent
吸附剂 Langmuir Freundlich R2 Qmax/(mg∙g−1) KL/min R2 1/n KF/min−1 活性氧化镁 0.998 6 59.59 0.66 0.848 7 0.442 3 15.44 FeCl3-MgO 0.997 6 107.64 0.17 0.915 8 0.427 1 15.96 Fe2(SO4)3-MgO 0.997 2 89.29 0.15 0.886 4 0.414 9 13.12 CaCl2-MgO 0.994 6 108.34 0.22 0.875 4 0.398 4 18.71 -
[1] WANG H, YANG L, GAO P, et al. Fluoride exposure induces lysosomal dysfunction unveiled by an integrated transcriptomic and metabolomic study in bone marrow mesenchymal stem cells[J]. Ecotoxicology and Environmental Safety, 2022, 239: 113672. doi: 10.1016/j.ecoenv.2022.113672 [2] TANEJA L, KOCHAR C, KUMAR Y P, et al. Adsorption: A preferred technique for fluoride removal from water[J]. Materials Today:Proceedings, 2022, 71(2): 215-219. [3] LU N C, LIU J C. Removal of phosphate and fluoride from wastewater by a hybrid precipitation–microfiltration process[J]. Separation and Purification Technology, 2010, 74(3): 329-335. doi: 10.1016/j.seppur.2010.06.023 [4] 桑硕, 帖靖玺, 张南. 地下水除氟研究进展[J]. 科技创新与应用, 2022, 12(2): 78-82. [5] ANIS S F, HASHAIKEH R, HILAL N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review[J]. Desalination, 2019, 452: 159-195. doi: 10.1016/j.desal.2018.11.006 [6] SANINI B, LEICHTWEIS J, SILVESTRI S, et al. Impregnation of activated alumina with CeO2 for water defluoridation[J]. Materials Chemistry and Physics, 2022, 291: 126648. doi: 10.1016/j.matchemphys.2022.126648 [7] AYALEW A A. Comparative adsorptive performance of adsorbents developed from kaolin clay and limestone for de-fluoridation of groundwater[J]. South African Journal of Chemical Engineering, 2023, 44: 1-13. doi: 10.1016/j.sajce.2022.11.002 [8] LAONAPAKUL T, SUTHI T, OTSUKA Y, et al. Fluoride adsorption enhancement of Calcined-Kaolin/Hydroxyapatite composite[J]. Arabian Journal of Chemistry, 2022, 15(11): 104220. doi: 10.1016/j.arabjc.2022.104220 [9] THIRUNAVUKKARASU A, NITHYA R, SIVASHANKAR R. Continuous fixed-bed biosorption process: A review[J]. Chemical Engineering Journal Advances, 2021, 8: 100188. doi: 10.1016/j.ceja.2021.100188 [10] AMIN F, TALPUR F N, BALOUCH A, et al. Biosorption of fluoride from aqueous solution by white—rot fungus Pleurotus eryngii ATCC 90888[J]. Environmental Nanotechnology, Monitoring & Management, 2015, 3: 30-37. [11] 张小磊, 李尚明, 李红艳, 等. 负载镧镁改性活性氧化铝的除氟性能[J]. 环境工程学报, 2016, 10(8): 4189-4195. [12] BAKHTA S, SADAOUI Z, LASSI U, et al. Performances of metals modified activated carbons for fluoride removal from aqueous solutions[J]. Chemical Physics Letters, 2020, 754: 137705. doi: 10.1016/j.cplett.2020.137705 [13] 刘理华, 车王燕, 刘书群. 棒状氧化镁的改性及其吸附性能研究[J]. 淮北师范大学学报(自然科学版), 2023, 44(1): 52-57. [14] 王慧玲, 张彦燕, 徐薇, 等. 改性活性氧化镁的除氟效能及机制[J]. 环境工程学报, 2015, 9(5): 2125-2130. [15] WANG X Y, WEI J J, PENG W C, et al. Evaluation and DFT analysis of 3D porous rhombohedral Fe-modified MgO for removing fluoride efficiently[J]. Applied Surface Science, 2021, 552: 149423. doi: 10.1016/j.apsusc.2021.149423 [16] 潘柳依, 孙晓红, 王军峰, 等. 固体酸催化剂SO42-/TiO2-SnO2的合成及其催化合成丙烯酸异冰片酯[J]. 精细化工, 2018, 35(5): 791-795. [17] 胡美秋, 袁红, 景艳红. SO42-/Al2O3催化剂的表征及其在环氧化反应中的催化活性[J]. 中国油脂, 2019, 44(12): 55-58. [18] LI L X, XU D, LI X Q, et al. Excellent fluoride removal properties of porous hollow MgO microspheres[J]. New Journal of Chemistry, 2014, 38(11): 5445-5452. doi: 10.1039/C4NJ01361A [19] LU M, GUAN X H, XU X H, et al. Characteristic and mechanism of Cr(VI) adsorption by ammonium sulfamate-bacterial cellulose in aqueous solutions[J]. Chinese Chemical Letters, 2013, 24: 253-256. doi: 10.1016/j.cclet.2013.01.034 [20] 付娆, 张文龙, 冯江涛, 等. 锐钛矿型二氧化钛的低温合成及其吸附除氟性能的研究[J]. 环境工程, 2020, 38(2): 70-76.