-
清华大学张希良等[1]采用中国-全球能源经济模型 (China-in-Global Energy Model,C-GEM) ,预测中国工业二氧化碳排放约在2025—2030年左右达峰,峰值相对2020年水平上升3亿吨。为实现减污降碳,联合国政府间气候变化专门委员会 (Intergovernmental Panel on Climate Chang, IPCC) 第三次评估报告[2]首次明确提出了协同效益∕协同效应 (Co-benefits) 的概念。国际上已在不同地区和行业开展了大量协同效益评估研究,证实了以减排污染物为目标的控制政策、措施不仅能够减排污染物,而且对CO2等温室气体减排具有一定的协同效益[3]。“协同效应”可以体现在3个方面:一是在控制温室气体排放过程中协同减少污染物排放;二是在控制污染物排放过程中协同减少温室气体排放;三是行业之间的跨行业协同减排温室气体。
污水处理厂是耗能大户,也是温室气体重要排放源[4],通过电力行业减碳管理措施降低水务行业碳排放量,对水务行业碳达峰碳中和具有重要意义。郝晓地等[5-6]对碳中和运行的国际先驱奥地利 Strass污水厂案例和美国Sheboygan 污水处理厂案例进行剖析,分析了剩余污泥产生、厌氧转化生物气并热电联产供热、供电方面的作法与经验。付加锋[7]针对城镇污水处理厂的污染物与温室气体如何实现协同减排核算问题提出了城镇污水处理厂污染物去除协同控制温室气体的核算边界、协同机制和核算方法。2022年6月10日,生态环境部等七部委联合发布《减污降碳协同增效实施方案》,对水环境治理协同控制提出了具体要求,污水处理行业应探索推动减污降碳协同增效的有效路径。近年来,污水处理厂经过技术升级改造能效已有较大改善,通过继续提升能效减碳的边际效益递减,亟待通过行业和领域间的协同来探索新的碳减排潜力。
近年来,江苏省能源消耗量、二氧化碳排放量及发电量均持续上涨。本课题组通过国家电网双碳支撑平台提供的实时碳排放核算管理、“电碳协同”减污降碳运行管理和绿色电力减排管理,结合污水处理运行管理规律,探讨数字化电碳管理效果,以期减少污水处理厂的二氧化碳间接排放,为污水厂减污降碳协同增效提供支持和运行指导,助力水务行业碳达峰碳中和。本研究聚焦于第三类跨行业的协同,可为污水处理、碳管理、电网3个领域的协同减污降碳提供新的合作途径。
基于电碳协同的江苏省某污水处理厂减碳管理分析
Analysis of carbon reduction management of a wastewater treatment plant in Jiangsu Province based on electro-carbon synergy
-
摘要: 在中国“3060碳达峰碳中和”的战略背景下,绿色低碳成为污水处理厂运行评价的重要指标,污水处理厂减污降碳是大势所趋。聚焦通过电碳生态圈及数字化平台支撑,用数字化电碳管理减少污水处理厂的间接用电二氧化碳排放,在时间、空间和经济性3个维度上,为污水处理、碳管理、电网3个行业的“水-碳-电”协同减污降碳提供了新的合作模式与技术支持。针对污水处理厂碳排放及碳减排管理问题,以江苏省某污水处理厂为例,从实时碳排放核算管理、日度电碳协同减碳运行管理和绿色电力交易减碳管理3个方面,解析了该污水处理厂冬季和夏季24 h用电功率曲线,探讨了污水处理厂电碳协同的日度减碳运行策略,核算了日度电碳协同减碳运行和绿色电力交易减碳管理的效果。结果表明,通过实时碳排放核算管理可以核算污水处理厂每日间接用电碳排放量,结合日度电碳协同减碳运行策略和绿色电力交易减碳管理2个减排措施,可为污水处理厂夏季日度减少间接用电碳排放30.63%,为污水处理厂冬季日度减少间接用电碳排放30.71%,每年可为江苏省某污水处理厂节约电费十余万元。该研究结果表明基于电碳协同的污水处理厂减碳管理效果较为理想,可为水务行业推进双碳战略提供参考。Abstract: In the context of China's "3060 carbon peak carbon neutral" strategy, green and low-carbon has become an important indicator for the evaluation of wastewater treatment plant operation, and it is the trend to reduce pollution and carbon in wastewater treatment plants. This paper focused on reducing the indirect electricity CO2 emissions of wastewater treatment plants by digital electricity carbon management through the support of electricity carbon ecosystem and digital platform, which provided a new cooperation model and carbon reduction technical support in three dimensions of time, space and economy for "water-carbon-electricity" collaboration among wastewater treatment, carbon management and power grid. Taking a wastewater treatment plant in Jiangsu province as an example, the 24-hour power consumption curve of the wastewater treatment plant in winter and summer was analyzed in this work, the daily carbon reduction strategy of the wastewater treatment plant was discussed, and the daily electricity carbon reduction operation and the green power trading carbon reduction management were calculated from three aspects: real-time carbon emission accounting management, daily electricity carbon reduction operation and green power trading carbon reduction management. The effect of daily electricity carbon reduction operation and green power trading carbon reduction management was calculated. The results showed that the daily indirect electricity carbon emissions of the wastewater treatment plant could be accounted for through real-time carbon accounting management, and the combination of the two emission reduction measures of daily electric carbon synergistic carbon reduction operation strategy and green power trading carbon reduction management could reduce the indirect electricity carbon emissions of the wastewater treatment plant by 30.63% in summer and 30.71% in winter, which could save more than 100 000 CNY of electricity cost for a wastewater treatment plant in Jiangsu Province every year. The effect of carbon reduction management of wastewater treatment plant based on electricity and carbon synergy was proved to be very significant, which can provide a reference for the water industry to promote the dual carbon strategy.
-
表 1 江苏省某污水处理厂进水水质
Table 1. Water quality of a wastewater treatment plant in Jiangsu Province
mg·L−1 废水类型 COD BOD5 SS NH3-N TN TP 总盐 确成硅废水进水水质 ≤40 ≤10 ≤50 ≤5 ≤10 ≤2 10 000 兴达泡塑废水进水水质 ≤500 ≤50 ≤150 ≤5 ≤10 ≤8 1 500 其他废水进水水质 ≤350 ≤90 ≤250 ≤20 ≤30 ≤4 1 500 -
[1] 张希良、黄晓丹、张达, 等. 碳中和目标下的能源经济转型路径与政策研究[J]. 管理世界, 2022(1): 35-51. doi: 10.3969/j.issn.1002-5502.2022.01.003 [2] 陈敏敏, 吴琼, 张震, 等. 我国城镇污水处理厂环境绩效评价研究[J]. 环境科学研究, 2020, 33(12): 2675-2682. doi: 10.13198/j.issn.1001-6929.2020.11.12 [3] 毛显强, 曾桉, 邢有凯, 等. 从理念到行动: 温室气体与局地污染物减排的协同效益与协同控制研究综述[J]. 气候变化研究进展, 2021. doi:10.12006/j.issn.1673-1719.2020.285. [4] KIM D, BOWEN J D, OZELKAN E C. Optimization of wastewater treatment plant operation for greenhouse gas mitigation[J]. Journal of Environmental Management, 2015, 163: 39-48. [5] 郝晓地, 程慧芹, 胡沅胜. 碳中和运行的国际先驱奥地利Strass污水厂案例剖析[J]. 中国给水排水, 2014, 30(22): 1-5. doi: 10.19853/j.zgjsps.1000-4602.2014.22.001 [6] 郝晓地, 李季, 张益宁, 等. 污水处理行业实现碳中和的路径及其适用条件分析[J]. 环境工程学报, 2022, 16(12): 3857-3863. doi: 10.12030/j.cjee.202112158 [7] 付加锋, 冯相昭, 高庆先, 等. 城镇污水处理厂污染物去除协同控制温室气体核算方法与案例研究[J]. 环境科学研究, 2021, 34(09): 2086-2093. doi: 10.13198/j.issn.1001-6929.2021.06.19 [8] 李姚旺, 张宁, 杜尔顺, 等. 基于碳排放流的电力系统低碳需求响应机制研究及效益分析[J]. 中国电机工程学报, 2022, 42(8): 2830-2842. doi: 10.13334/J.0258-8013.PCSEE.220308 [9] 刘昊. 低碳绿色措施在污水处理技术中的应用[J]. 水电站设计, 2022, 38(3): 87-91. doi: 10.16671/j.cnki.cn51-1382/tv.2022.03.014