-
随着我国人民生活质量的极大提高,生活和农业生产所产生的有机类废弃物的规模也逐年增多,形成了巨大的环境压力。2020年6月8日,生态环境部、国家统计局、农业农村部联合发布的《第二次全国污染源普查公报》[1]显示:2017年,全国干污泥产生量1 026.71万t,处置量为1 000.59万t;秸秆产生量为8.05亿t,秸秆利用量5.85亿t;畜禽养殖排放化学需氧量604.83万t。废弃资源的安全高效利用已成为当前研究的热点之一。蚯蚓被达尔文称之为“世界上最有价值的动物”。蚯蚓作为一种养殖成本低、营养价值丰富、产量高、经济效益好的动物,具有很大的推广应用前景,在我国广大农村和城市进行蚯蚓的养殖及开发利用市场十分广阔。蚯蚓在生态系统中的功能主要表现在: 1)影响所在环境中有机质分解和养分循环等关键过程; 2)影响所在环境的理化性质; 3)通过挖掘、吞食和排泄作用,与所在环境中的植物、微生物及其他动物相互影响[2]。在蚯蚓-微生物共生系统中,蚯蚓主要起调控作用,通过肠道消化,尤其可加速污染物的降解,影响系统中微生物量、活性及群落结构[3-4]。蚯蚓堆肥是利用蚯蚓和微生物,将有机类废弃物进行快速有效地分解并将其转换成腐殖质的一种生态环境友好的堆肥技术,被应用于污泥、畜禽废弃物和秸秆等废弃物治理领域[5-7],可有效降低固体废弃物对环境带来的危害和风险[8]。在蚯蚓堆肥过程中为保证其生长与繁殖环境,常添加各种物料来改善污泥等废弃物的理化性质,主要采用的物料有牛粪、生物炭、水稻壳、粉煤灰和甘蔗渣等[9-12],还有的采用沸石、膨润土等化学调理剂[13]。现有参考文献常用牛粪驯化养殖后的蚯蚓来开展不同物料配比消纳试验研究,而利用污泥驯化后的蚯蚓作为试验研究对象较少提及。因此,本研究以污泥驯化后的大平2号蚓作为供试蚯蚓,探讨了腐熟秸秆、牛粪和污泥的不同配比对蚯蚓和蚯蚓粪理化性质、蚯蚓生长繁殖和蚯蚓肠道群落结构组成的影响,为蚯蚓堆肥技术提供技术参考。
过腹转化有机废弃物对蚯蚓及蚯蚓粪的影响研究
Study on effect of transformation of organic wastes on earthworm and vermicompost
-
摘要: 为研究污泥、腐熟秸秆和牛粪不同比例经蚯蚓过腹转化后对蚯蚓和蚯蚓粪的影响,进行了为期60 d的堆肥实验,测定了蚯蚓粪和蚯蚓的理化性状以及蚯蚓肠道细菌群落结构组成情况。结果表明,蚯蚓能够消纳污泥、污泥+牛粪和污泥+腐熟秸秆不同配比原料,尤其以100%污泥和70%污泥+30%牛粪的消纳效果最好,蚯蚓增殖率最高,而50%污泥+50%腐熟秸秆的效果最差;当污泥中添加牛粪和腐熟秸秆均能够降低蚯蚓粪的pH和有机质含量,使电导率升高;不同原料配比影响蚯蚓肠道微生物群落结构组成,喂食100%污泥的蚯蚓肠道内细菌以厚壁菌门(Firmicutes)为主;随着原料中牛粪比例的增加,厚壁菌门减少而变形菌门(Proteobacteria)、放线菌门(Acitinobacteria)、拟杆菌门(Bacteroidetes)占比逐渐增加;添加腐熟秸秆后,肠道内变形菌门成为绝对优势菌。Abstract: In oder to study the effects of different ratios of sludge, decomposed straw and cow dung on earthworms and vermicompost after the abdominal transformation of earthworms, a 60-day experiment was conducted. The physicochemical properties of earthworm and vermicompost, and the bacterial diversity of earthworm intestine were tested. The results showed that the earthworms could decompose sludge, sludge+cow dung and sludge+decomposed straw with different proportions, especially 100% sludge and 70% sludge+30% cow dung had the best absorption effect with a highest proliferation rate of the earthworm. However the worst result was occurred with 50% sludge + 50% decomposed straw. Adding cow dung and decomposed straw compost to the sludge could reduce the pH and organic matter contents of the vermicompost and increase the EC value. Different ratios of raw materials affected the composition of the intestinal microbial community of earthworms. The bacteria in the intestine of earthworms fed with 100% sludge was mainly Firmicutes. With the increasing of cow dung in the raw materials, the number of Firmicutes decreased, while the proportions of Proteobacteria, Actinomycetes and Bacteroides gradually increased. After adding decomposed straw to the sludge, the Proteobacteria in the intestinal tract became the absolute dominant bacteria.
-
Key words:
- vermicompost /
- sewage sludge /
- cow dung /
- decomposed straw /
- bacteria diversity
-
表 1 不同处理原料配比
处理1(T1) 处理2(T2) 处理3(T3) 处理4(T4) 处理5(T5) 100%污泥 50%污泥+50%腐熟秸秆 50%污泥+50%牛粪 70%污泥+30%牛粪 70%污泥+30%腐熟秸秆 表 2 不同处理原料理化性状
处理指标 总养分/% 有机质/% pH 电导率/μS·cm−1 T1 7.19 44.23 7.14 1 679 T2 4.44 53.17 7.50 3 740 T3 5.79 41.10 7.95 4 570 T4 6.77 44.23 7.14 1 679 T5 5.44 41.23 8.40 3 600 表 3 不同处理蚯蚓粪理化性状
处理指标 容重
/g·cm−3总养分/% 有机质/% pH 电导率
/μS·cm−1粪大肠菌群数/个·g−1 蛔虫卵死亡率/% T1 0.55+0.02 7.95+0.16 41.05+2.66 6.18+0.06 3 230+5.66 ≤100 100 T2 0.49+0.03 4.37+0.22 47.45+1.74 6.86+0.09 4 110+8.29 ≤100 100 T3 0.54+0.01 5.71+0.09 34.95+0.96 7.00+0.14 6 130+9.57 ≤100 100 T4 0.54+0.06 7.52+0.87 39.92+1.32 6.32+0.12 6 550+3.28 ≤100 100 T5 0.55+0.03 5.36+1.00 34.12+1.11 7.59+0.18 5 250+6.46 ≤100 100 注:表中数值为平均值±样本标准偏差。 表 4 不同处理蚯蚓体理化性状
处理指标 含水率/% 蚯蚓质量/kg 蚯蚓长度/cm 蚯蚓直径/mm 总养分/% pH 电导率
/μS·cm−1T1 78.94+0.67 3.11+0.05 6.01+0.12 3.16+0.03 11.76+0.13 5.40+0.02 4 990+7.95 T2 78.80+0.42 1.77+0.09 5.29+0.14 1.90+0.04 12.23+0.09 6.05+0.01 6 200+4.32 T3 78.53+0.85 2.10+0.10 5.22+0.09 2.04+0.07 12.03+0.11 5.47+0.03 6 810+8.61 T4 79.37+0.39 3.07+0.08 5.43+0.17 2.83+0.09 12.06+0.08 5.53+0.01 4 190+5.6 T5 78.36+0.66 2.21+0.09 5.08+0.07 2.01+0.02 12.31+0.16 5.75+0.04 4 300+6.27 注:表中数值为平均值±样本表中偏差。蚯蚓长度和直径为自然状态下统一标准测量。 表 5 Alpha多样性指数统计
处理指标 OTU Chaol Shannon Coverage T1 736 738.333 3 4.647 4 0.999 8 T2 82 230.2 1.194 1 0.999 1 T3 484 561.153 8 1.776 0.997 9 T4 747 757.111 1 5.530 7 0.999 6 T5 60 249.0 1.737 7 0.999 4 注:Chao1为丰富度估计量;Shannon为香农-威纳多样性指;Coverage为覆盖深度。 -
[1] 生态环境部办公厅. 第二次全国污染源普查公报[EB/OL]. http://www.gov.cn/xinwen/2020-06/10/content _5518391.htm? Tdsourcetag=spctim_aiomsg. [2] BLOUIN M, HODSON M E, DELGADO E A, et al. A review of earthworm impact on soil function and ecosystem services[J]. European Journal of Soil Science, 2013, 64(2): 161 − 182. doi: 10.1111/ejss.12025 [3] ZHAO L M, WANG Y Y, YANG J, et al. Earthworm-microorganism interactions: A strategy to stabilize domestic wastewater sludge[J]. Water Research, 2010, 44(8): 2572 − 2582. doi: 10.1016/j.watres.2010.01.011 [4] VIVAS A, MORENO B, GARCIA-RODRIGUEZ S, et al. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste[J]. Bioresource Technology, 2009, 100(3): 1319 − 1326. doi: 10.1016/j.biortech.2008.08.014 [5] 周东兴, 李晶, 宁玉翠, 等. 蚯蚓堆制猪粪过程中Cu、Zn形态变化与关键酶活性间关系的研究[J]. 农业环境科学学报, 2019, 38(6): 1349 − 1356. doi: 10.11654/jaes.2018-1255 [6] LV B Y, ZHANG D, CUI Y X, et al. Effects of C/N ratio and earthworms on greenhouse gas emissions during vermicomposting of sewage sludge[J]. Bioresource Technology, 2018, 268: 408 − 414. doi: 10.1016/j.biortech.2018.08.004 [7] 王争妍, 雷紫烟, 叶志雄, 等. 蚯蚓作用下不同C/N秸秆还田对土壤CO2及N2O排放的影响[J]. 农业环境科学学报, 2017, 36(9): 1908 − 1915. doi: 10.11654/jaes.2017-0187 [8] 金波, 韦建玉, 屈冉. 蚯蚓与微生物、土壤重金属及植物的关系[J]. 土壤通报, 2009, 40(2): 439 − 442. doi: 10.19336/j.cnki.trtb.2009.02.051 [9] LIM S L, WU T Y, SIM E Y S, et al. Biotransformation of rice husk into organic fertilizer through vermicomposting[J]. Ecological Engineering, 2012, 41: 60 − 64. doi: 10.1016/j.ecoleng.2012.01.011 [10] WANG L M, ZHANG Y M, LIAN J J, et al. Impact of fly ash and phosphatic rock on metal stabilization and bioavailability during sewage sludge vermicomposting[J]. Bioresource Technology, 2013, 136: 281 − 287. doi: 10.1016/j.biortech.2013.03.039 [11] SUTHAR S. Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic eisenia fetida (oligochaeta)[J]. Journal of Hazardous Materials, 2009, 163(1): 199 − 206. doi: 10.1016/j.jhazmat.2008.06.106 [12] SHI Y, GE Y, CHANG J, et al. Garden waste biomass for renewable and sustainable energy production in China: Potential, challenges and development[J]. Renewablem and Sustainable Energy Reviews, 2013, 22: 432 − 437. doi: 10.1016/j.rser.2013.02.003 [13] 蔡琳琳, 李素艳, 康跃, 等. 沸石、膨润土和过磷酸钙对蚯蚓堆肥园林绿化废弃物腐熟效果的影响[J]. 应用基础与工程科学学报, 2020, 28(2): 299 − 309. [14] 鲍士旦. 土壤农业化学分析方法[M]. 3版. 北京: 中国农业出版社, 2000. [15] DOMINGUEZ J, BRIONES M J I, MATO S. Effect on the diet on growth and reproduction of Eisenia andrei (Oligochaeta, Lumbricidae)[J]. Pedobiologia, 1997, 41(6): 566. [16] KHARRAZI S M, YOUNESI H, ABEDINI-TORGHABEH J. Microbial biodegradation of waste materials for nutrients enrichment and heavy metals removal: An integrated composting-vermicomposting process[J]. International Biodeterioration & Biodegradation, 2014, 92: 41 − 48. [17] NDEGWA P M, THOMPSON S A, DAS K C. Effect of stocking density and feeding rate on vermicomposting of biosolids[J]. Bioresource Technology, 2000, 71(1): 5 − 12. doi: 10.1016/S0960-8524(99)00055-3 [18] LIM S L, LEE L H, WU T Y. Sustainability of using composting and vermicompostingt echnologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis[J]. Journal of Cleaner Production, 2016, 111: 262 − 278. doi: 10.1016/j.jclepro.2015.08.083 [19] 蔡玉琪, 蔡树美, 倪圣亚, 等. 蚯蚓对秸秆-污泥混合物的消解转化效果[J]. 农业环境科学学报, 2009, 28(6): 1284 − 1287. doi: 10.3321/j.issn:1672-2043.2009.06.033 [20] 李英凯, 李佳丽, 孙奚悦, 等. 添加牛粪和园林废弃物对污泥蚯蚓堆肥的影响[J]. 环境工程学报, 2020, 14(1): 197 − 208. doi: 10.12030/j.cjee.201903086 [21] 刘佳, 李婧男, 文科军, 等. 不同堆肥条件下园林废弃物中有机碳物质的动态变化[J]. 北方园艺, 2012(24): 174 − 178. [22] 庞博文, 李永梅, 徐昆龙, 等. 蚯蚓堆肥影响土壤健康和作物生长的研究进展[J]. 江苏农业科学, 2020, 48(12): 29 − 35. [23] 张莹. 污泥堆肥中生化特性、重金属转化及微生物多样性的研究[D]. 哈尔滨: 东北农业大学, 2013: 31. [24] 黄魁, 夏慧, 陈景阳. 蚯蚓对城市污泥蚯蚓堆肥过程中微生物特征变化的影响[J]. 环境科学学报, 2018, 38(8): 3146 − 3152. [25] 杨萍萍, 尹华, 彭辉, 等. 外接菌种对污泥堆肥效能及堆体细菌群落的影响[J]. 环境科学, 2017, 38(8): 3536 − 3543. [26] YASIR M, ASLAM Z, KIM S W, et al. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity[J]. Bioresource Technology, 2009, 100(19): 4396 − 4403. doi: 10.1016/j.biortech.2009.04.015 [27] AIRA M, MONROY F, DOMINGUEZ J. C to N ratio strongly affects population structure of Eisenia fetida in vermicomposting systems[J]. European Journal of Soil Biology, 2006, 42: 127 − 131. doi: 10.1016/j.ejsobi.2005.12.002 [28] 陈玉香, 赵婷婷, 姚月, 等. 蚯蚓黏液促进玉米秸秆分解及其机理分析[J]. 农业工程学报, 2019, 35(15): 234 − 240. doi: 10.11975/j.issn.1002-6819.2019.15.029 [29] CARLILE M J, WATKINSON S C, GOODAY G W. Fungal cells and vegetative growth. The Fungi (Second Edition)[M]. London: Academic Press: 85-184. [30] 史雅静, 徐明, 王振宇, 等. 蚯蚓对菇渣中纤维素和木质素生物转化的研究[J]. 环境科学学报, 2020, 40(5): 1779 − 1785. [31] 邓艳芹, 吕建平, 罗璇. 蚯蚓体液对纤维素降解菌生长的影响[J]. 贵州师范学院学报, 2017, 33(12): 9 − 12. doi: 10.3969/j.issn.1674-7798.2017.12.003