-
生态系统服务是人类从生态系统中获得的惠益,既包括食物、纤维等物质产品,又包括维持人类生存和发展所需的各种环境条件与效用[1-2]。然而,随着人口增长与经济发展,全球生态系统服务出现了丧失与退化的问题,对人类福祉及可持续发展造成威胁,其中主要原因之一是缺乏有效的生态系统管理[3]。阐明生态系统服务特征是科学管理生态系统的基础,可为提升生态系统服务及人类福祉提供理论支持。
1997年,COSTANZA et al[1]核算了全球生态系统服务的价值,随后生态系统服务研究受到国内外学者的广泛关注。自联合国启动千年生态系统评估计划以来,生态系统服务的概念、分类体系及研究方法得以完善[2],为研究的深入奠定了基础。此后,国内外学者围绕生态系统服务的特征展开了大量的研究,内容涉及生态系统服务的形成机理、权衡/协同关系、尺度特征和流动等多方面[4]。近年来,面向生态系统服务的生态系统管理成为研究重点,如何将生态系统服务的理论认知应用于管理实践,是目前研究中的关键议题[5]。生态系统管理的核心目的之一是提升生态系统服务以满足不同利益相关者的需求,加强生态系统管理是实现多方协同增益及可持续发展的必要途径[6]。陆地生态系统服务的产生、传输和使用等过程由生态系统的结构、过程和功能等属性控制,同时受到人类活动、需求与管理措施等多因素的影响[7],因此,基于生态系统格局、结构、过程的基本特征及其与生态系统服务的关系,系统总结生态系统服务的基本特征,有望为管理和调控生态系统、提高生态系统服务提供科学依据。
本文基于陆地生态系统服务的产生、传输与利用等过程,从自然生态系统与社会经济系统之间的关系出发,系统总结陆地生态系统服务的若干特征,阐述面向生态系统服务提升的生态系统管理策略,以阐释生态系统格局/结构-过程与生态系统服务的关系,深化认识陆地生态系统服务的基本特征;明确基于生态系统服务提升的陆地生态系统管理途径,以期为优化生态系统管理、提升生态系统服务奠定科学基础。
陆地生态系统服务若干特征与管理应用
Characteristics and management application of terrestrial ecosystem services
-
摘要: 陆地生态系统为人类的生存发展提供了物质产品及生存环境两方面的多种服务,认识生态系统服务的基本特征是生态系统管理的重要前提。基于陆地生态系统服务的产生、传输与利用等过程,生态系统服务的基本特征可以概括为:质量依赖性、空间异质性、空间尺度关联性、权衡与协同和多尺度传输等方面。认识生态系统服务特征可以为生态系统管理提供重要启示:提高生态系统质量;辨识和保护高保护价值区域;维护生态系统服务过程的完整性;协调生态系统服务权衡关系;权衡多尺度利益相关者。关于陆地生态系统服务基本特征及管理应用的综述,可为有效管理生态系统、提升生态系统服务提供科学指导。Abstract: Terrestrial ecosystem provides a variety of services in both material products and living environment for human survival and development. Hence, understanding the characteristics of ecosystem services is an important prerequisite for ecosystem management. According to the generation, delivery and use of ecosystem services, the characteristics of ecosystem services include ecosystem quality dependence, spatial heterogeneity, multi-scale correlation, trade-offs, synergies and cross-scale delivery. Understanding these characteristics provides important implications for the ecosystem management, including improving ecosystem quality, identifying and protecting high conservation value areas, maintaining the integrity of ecosystem service process, coordinating ecosystem service trade-offs and weighing multi-scale stakeholders. The review on characteristics and management application of terrestrial ecosystem services provides a scientific guidance for effective ecosystem management and ecosystem service improvment.
-
Key words:
- ecosystem services /
- ecosystem management /
- trade-offs /
- scale /
- sustainable development
-
[1] COSTANZA R, DARGE R, DEGROOT R, et al. The value of the world's ecosystem services and natural capital[J]. Nature, 1997, 387(6630): 253 − 260. doi: 10.1038/387253a0 [2] Millennium Ecosystem Assessment. Ecosystems and human well-being[M]. Washington, DC: Island Press, 2005. [3] HE J, YAN Z, WAN Y. Trade-offs in ecosystem services based on a comprehensive regionalization method: a case study from an urbanization area in China[J]. Environmental Earth Sciences, 2018, 77(5): 179. doi: 10.1007/s12665-018-7280-2 [4] 李双成. 生态系统服务研究思辨[J]. 景观设计学, 2019, 7(1): 82 − 87. [5] HAAREN C, ALBERT C, BARKMANN J, et al. From explanation to application: introducing a practice-oriented ecosystem services evaluation (PRESET) model adapted to the context of landscape planning and management[J]. Landscape Ecology, 2014, 29(8): 1335 − 1346. doi: 10.1007/s10980-014-0084-1 [6] COSTANZA R, DEGROOT R, BRAAT L, et al. Twenty years of ecosystem services: How far have we come and how far do we still need to go?[J]. Ecosystem Services, 2017, 28: 1 − 16. doi: 10.1016/j.ecoser.2017.09.008 [7] FELIPE-LUCIA M R, MARTINLOPEZ B, LAVOREL S, et al. Ecosystem services flows: Why stakeholders’ power relationships matter[J]. PLOS ONE, 2015, 10(7): e0132232. doi: 10.1371/journal.pone.0132232 [8] ZODERER B M, TASSER E, CARVER S, et al. Stakeholder perspectives on ecosystem service supply and ecosystem service demand bundles[J]. Ecosystem Services, 2019, 37: 100938. doi: 10.1016/j.ecoser.2019.100938 [9] VILLA F, VOIGT B, ERICKSON J D. New perspectives in ecosystem services science as instruments to understand environmental securities[J]. Philosophical Transactions of the Royal Society of London, 2014, 369(1639): 20120286. doi: 10.1098/rstb.2012.0286 [10] FISHER B, TURNER R K, MORLING P. Defining and classifying ecosystem services for decision making[J]. Ecological Economics, 2009, 68(3): 643 − 653. doi: 10.1016/j.ecolecon.2008.09.014 [11] 郑华, 李屹峰, 欧阳志云, 等. 生态系统服务功能管理研究进展[J]. 生态学报, 2013, 33(3): 702 − 710. [12] 陈强, 陈云浩, 王萌杰, 等. 2001—2010年洞庭湖生态系统质量遥感综合评价与变化分析[J]. 生态学报, 2015, 35(13): 4347 − 4356. [13] 孙滨峰. 东北森林带生态系统格局、质量、服务功能和胁迫十年变化研究(2000-2010)[D]. 北京: 中国科学院生态环境研究中心, 2015. [14] SINARE H, GORDON L J. Ecosystem services from woody vegetation on agricultural lands in Sudano-Sahelian West Africa[J]. Agriculture, Ecosystems & Environment, 2015, 200: 186 − 199. [15] 张琨, 吕一河, 傅伯杰. 生态恢复中生态系统服务的演变: 趋势、过程与评估[J]. 生态学报, 2016, 36(20): 6337 − 6344. [16] LAVOREL S, GRIGULIS K, LAMARQUE P, et al. Using plant functional traits to understand the landscape distribution of multiple ecosystem services[J]. Journal of Ecology, 2011, 99(1): 135 − 147. doi: 10.1111/j.1365-2745.2010.01753.x [17] DELGADO-AGUILAR M J, HINOJOSA L, SCHMITT C B. Combining remote sensing techniques and participatory mapping to understand the relations between forest degradation and ecosystems services in a tropical rainforest[J]. Applied Geography, 2019, 104: 65 − 47. doi: 10.1016/j.apgeog.2019.02.003 [18] BENAYAS J M R, NEWTON A C, DIAZ A, et al. Enhancement of biodiversity and ecosystem services by ecological restoration: a meta-analysis[J]. Science, 2009, 325(5944): 1121 − 1124. doi: 10.1126/science.1172460 [19] 丁肇慰, 肖能文, 高晓奇, 等. 长江流域2000—2015年生态系统质量及服务变化特征[J]. 环境科学研究, 2020, 33(5): 1308 − 1314. doi: 10.13198/j.issn.1001-6929.2020.03.24 [20] 卢慧婷, 黄琼中, 朱捷缘, 等. 拉萨河流域生态系统类型和质量变化及其对生态系统服务的影响[J]. 生态学报, 2018, 38(24): 8911 − 8918. [21] LI P, SHENG M Y, YANG D W, et al. Evaluating flood regulation ecosystem services under climate, vegetation and reservoir influences[J]. Ecological Indicators, 2019, 107: 105642. doi: 10.1016/j.ecolind.2019.105642 [22] 刘绿怡, 卞子亓, 丁圣彦. 景观空间异质性对生态系统服务形成与供给的影响[J]. 生态学报, 2018, 38(18): 6412 − 6421. [23] 赵文武, 刘月, 冯强, 等. 人地系统耦合框架下的生态系统服务[J]. 地理科学进展, 2018, 37(1): 139 − 151. [24] GRIMM N B, GROFFMAN P, STAUDINGER M, et al. Climate change impacts on ecosystems and ecosystem services in the United States: process and prospects for sustained assessment[J]. Climatic Change, 2016, 135(1): 97 − 105. doi: 10.1007/s10584-015-1547-3 [25] RUNTING R K, LOVELOCK C E, BEYER H L, et al. Costs and opportunities for preserving coastal wetlands under sea level rise[J]. Conservation Letters, 2017, 10(1): 49 − 57. doi: 10.1111/conl.12239 [26] BAGSTAD K J, SEMMENS D J, WAAGE S, et al. A comparative assessment of decision-support tools for ecosystem services quantification and valuation[J]. Ecosystem Services, 2013, 5: 27 − 39. doi: 10.1016/j.ecoser.2013.07.004 [27] AHMED M A A, ABD-ELRAHMAN A, ESCOBEDO F J, et al. Spatially-explicit modeling of multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States[J]. Journal of Environmental Management, 2017, 199: 158 − 171. [28] 饶恩明, 肖燚. 四川省生态系统土壤保持功能空间特征及其影响因素[J]. 生态学报, 2018, 38(24): 8741 − 8749. [29] ANDERSSON E, MCPHEARSON T, KREMER P, et al. Scale and context dependence of ecosystem service providing units[J]. Ecosystem Services, 2015, 12: 157 − 164. doi: 10.1016/j.ecoser.2014.08.001 [30] QIU J X, TURNER M G. Importance of landscape heterogeneity in sustaining hydrologic ecosystem services in an agricultural watershed[J]. Ecosphere, 2015, 6(11): 1 − 19. [31] 杨冕, 张艺千, 王春晓. 湖北省关键生态系统服务供需状况的时空变化研究[J]. 长江流域资源与环境, 2019, 28(9): 2080 − 2091. [32] RICKETTS T H. Tropical forest fragments enhance pollinator activity in nearby coffee crops[J]. Conservation Biology, 2004, 18(5): 1262 − 1271. doi: 10.1111/j.1523-1739.2004.00227.x [33] MACE G M, NORRIS K, FITTER A H. Biodiversity and ecosystem services: a multilayered relationship[J]. Trends in Ecology & Evolution, 2012, 27(1): 19 − 26. [34] VAUGHN C C. Ecosystem services provided by freshwater mussels[J]. Hydrobiologia, 2018, 810(1): 15 − 27. doi: 10.1007/s10750-017-3139-x [35] COSTA A, SILVA B, GERARDO J, et al. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Prays oleae[J]. Agriculture, Ecosystems & Environment, 2020, 287: 106708. [36] TEIXEIRA D G, MARQUES S P, GARABINI C T, et al. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services[J]. Landscape Ecology, 2018, 33: 1247 − 1257. doi: 10.1007/s10980-018-0673-5 [37] DIEKTTER T, WAMSER S, WOLTERS V, et al. Landscape and management effects on structure and function of soil arthropod communities in winter wheat[J]. Agriculture, Ecosystems & Environment, 2010, 137(1-2): 108 − 112. [38] FAHRIG L, GIRARD J, DURO D, et al. Farmlands with smaller crop fields have higher within-field biodiversity[J]. Agriculture, Ecosystems & Environment, 2015, 200: 219 − 234. [39] MAAS B, CLOUGH Y, TSCHARNTKE T. Bats and birds increase crop yield in tropical agroforestry landscapes[J]. Ecology Letters, 2013, 16(12): 1480 − 1487. doi: 10.1111/ele.12194 [40] MAAS B, TSCHARNTKE T, SALEH S, et al. Avian species identity drives predation success in tropical cacao agroforestry[J]. Journal of Applied Ecology, 2015, 52(3): 735 − 743. doi: 10.1111/1365-2664.12409 [41] RUSCH A, CHAPLIN-KRAMER R, GARDINER M M, et al. Agricultural landscape simplification reduces natural pest control: A quantitative synthesis[J]. Agriculture, Ecosystems & Environment, 2016, 221: 198 − 204. [42] HAHN M B, GANGNON R E, CHRISTOVAM B, et al. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon[J]. PLOS ONE, 2014, 9(1): e85725. doi: 10.1371/journal.pone.0085725 [43] PRIST P R, URIARTE M, TAMBOSI L R, et al. Landscape, environmental and social predictors of Hantavirus risk in São Paulo, Brazil[J]. PLOS ONE, 2016, 11(10): e0163459. doi: 10.1371/journal.pone.0163459 [44] WETERINGS R, UMPONSTIRA C, BUCKLEY H L. Landscape variation influences trophic cascades in dengue vector food webs[J]. Science Advances, 2018, 4(2): eaap9534. doi: 10.1126/sciadv.aap9534 [45] BARBIER E B, KOCH E W, SILLIMAN B R, et al. Coastal ecosystem-based management with nonlinear ecological functions and values[J]. Science, 2008, 319: 321 − 323. doi: 10.1126/science.1150349 [46] RODRÍGUEZ J, BEARD JR T D, BENNETT E, et al. Trade-offs across space, time, and ecosystem services[J]. Ecology and Society, 2006, 11(1): 709 − 723. [47] 李双成, 张才玉, 刘金龙, 等. 生态系统服务权衡与协同研究进展及地理学研究议题[J]. 地理研究, 2013, 32(8): 1379 − 1390. [48] DARYANTO S, FU B, ZHAO W. Evaluating the use of fire to control shrub encroachment in global drylands: A synthesis based on ecosystem service perspective[J]. Science of the Total Environment, 2018, 648: 285 − 292. [49] PAN Y, WU J X, XU Z R. Analysis of the tradeoffs between provisioning and regulating services from the perspective of varied share of net primary production in an alpine grassland ecosystem[J]. Ecological Complexity, 2014, 17: 79 − 86. doi: 10.1016/j.ecocom.2013.11.001 [50] GENELETTI D, SCOLOZZI R, ADEM ESMAIL B. Assessing ecosystem services and biodiversity tradeoffs across agricultural landscapes in a mountain region[J]. International Journal of Biodiversity Science, Ecosystem Services & Management, 2018, 14(1): 189 − 209. [51] SCHIRPKE U, CANDIAGO S, VIGL L E, et al. Integrating supply, flow and demand to enhance the understanding of interactions among multiple ecosystem services[J]. Science of the Total Environment, 2019, 651: 928 − 941. doi: 10.1016/j.scitotenv.2018.09.235 [52] LESTER S E, COSTELLO C, HALPERN B S, et al. Evaluating tradeoffs among ecosystem services to inform marine spatial planning[J]. Marine Policy, 2013, 38: 80 − 89. doi: 10.1016/j.marpol.2012.05.022 [53] MOUCHET M A, LAMARQUE P, MARTÍN-LÓPEZ B, et al. An interdisciplinary methodological guide for quantifying associations between ecosystem services[J]. Global Environmental Change, 2014, 28: 298 − 308. doi: 10.1016/j.gloenvcha.2014.07.012 [54] DADE M C, MITCHELL M G E, MCALPINE C A, et al. Assessing ecosystem service trade-offs and synergies: The need for a more mechanistic approach[J]. Ambio, 2019, 48(10): 1116 − 1128. doi: 10.1007/s13280-018-1127-7 [55] LI Z H, DENG X Z, JIN G, et al. Tradeoffs between agricultural production and ecosystem services: A case study in Zhangye, Northwest China[J]. Science of the Total Environment, 2020, 707: 136032. doi: 10.1016/j.scitotenv.2019.136032 [56] LI B J, CHEN D X, WU S H, et al. Spatio-temporal assessment of urbanization impacts on ecosystem services: Case study of Nanjing City, China[J]. Ecological Indicators, 2016, 71: 416 − 427. doi: 10.1016/j.ecolind.2016.07.017 [57] 郝梦雅, 任志远, 孙艺杰, 等. 关中盆地生态系统服务的权衡与协同关系动态分析[J]. 地理研究, 2017, 36(3): 592 − 602. [58] ZHENG H, WANG L J, WU T. Coordinating ecosystem service trade-offs to achieve win–win outcomes: A review of the approaches[J]. Journal of Environmental Sciences, 2019, 82(8): 103 − 112. [59] 张宏锋, 欧阳志云, 郑华. 生态系统服务功能的空间尺度特征[J]. 生态学杂志, 2007(9): 1432 − 1437. doi: 10.13292/j.1000-4890.2007.0247 [60] SCHOLES R, REYERS B, BIGGS R, et al. Multi-scale and cross-scale assessments of social–ecological systems and their ecosystem services[J]. Current Opinion in Environmental Sustainability, 2013, 5(1): 16 − 25. doi: 10.1016/j.cosust.2013.01.004 [61] HU Y N, PENG J, LIU Y X, et al. Integrating ecosystem services trade-offs with paddy land-to-dry land decisions: A scenario approach in Erhai Lake Basin, southwest China[J]. Science of the Total Environment, 2018, 625: 849 − 860. doi: 10.1016/j.scitotenv.2017.12.340 [62] LÓPEZ-HOFFMAN L, VARADY R G, BALVANERA F P, et al. Ecosystem services across borders: a framework for transboundary conservation policy[J]. Frontiers in Ecology & the Environment, 2010, 8(2): 84 − 91. [63] SHAN Y M, CHEN D M, GUAN X X, et al. Seasonally dependent impacts of grazing on soil nitrogen mineralization and linkages to ecosystem functioning in Inner Mongolia grassland[J]. Soil Biology and Biochemistry, 2011, 43(9): 1943 − 1954. doi: 10.1016/j.soilbio.2011.06.002 [64] CHEN C, PARK T, WANG X, et al. China and India lead in greening of the world through land-use management[J]. Nature Sustainability, 2019, 2(2): 122 − 129. doi: 10.1038/s41893-019-0220-7 [65] MACIAS-FAURIA M. Satellite images show China going green[J]. Nature, 2018, 553(7689): 411 − 413. doi: 10.1038/d41586-018-00996-5 [66] 刘鸿雁. 中国大规模造林变绿难以越过胡焕庸线[J]. 中国科学:地球科学, 2019, 49(11): 1831 − 1832. [67] 徐德琳, 邹长新, 徐梦佳, 等. 基于生态保护红线的生态安全格局构建[J]. 生物多样性, 2015, 23(6): 740 − 746. doi: 10.17520/biods.2015132 [68] FEDRIGO J K, ATAIDE P F, AZAMBUJA FILHO J, et al. Temporary grazing exclusion promotes rapid recovery of species richness and productivity in a long-term overgrazed Campos grassland[J]. Restoration Ecology, 2018, 26(4): 677 − 685. doi: 10.1111/rec.12635 [69] 余辉. 日本琵琶湖流域生态系统的修复与重建[J]. 环境科学研究, 2016, 29(1): 36 − 43. doi: 10.13198/j.issn.1001-6929.2016.01.05 [70] 吴舒尧, 黄姣, 李双成. 不同生态恢复方式下生态系统服务与生物多样性恢复效果的整合分析[J]. 生态学报, 2017, 37(20): 6986 − 6999. [71] TURNER W R, KATRINA B, BROOKS T M, et al. Global conservation of biodiversity and ecosystem services[J]. Bioscience, 2007, 57(10): 868 − 873. doi: 10.1641/B571009 [72] NAIDOO R, BALMFORD A, COSTANZA R, et al. Global mapping of ecosystem services and conservation priorities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(28): 9495 − 9500. doi: 10.1073/pnas.0707823105 [73] 张立伟, 傅伯杰. 生态系统服务制图研究进展[J]. 生态学报, 2014, 34(2): 316 − 325. [74] JOHNSON C N, BALMFORD A, BROOK B W, et al. Biodiversity losses and conservation responses in the Anthropocene[J]. Science, 2017, 356(6335): 270 − 275. doi: 10.1126/science.aam9317 [75] 环境保护部, 中国科学院. 全国生态功能区划[N]. 中国环境报, 2015-12-01(006). [76] GEERTSEMA W, ROSSING W A, LANDIS D A, et al. Actionable knowledge for ecological intensification of agriculture[J]. Frontiers in Ecology & the Environment, 2016, 14(4): 209 − 216. [77] ISBELL F, GONZALEZ A, LOREAU M, et al. Linking the influence and dependence of people on biodiversity across scales[J]. Nature, 2017, 546(7656): 65 − 72. doi: 10.1038/nature22899 [78] FAHRIG L, BAUDRY J, BROTONS L, et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[J]. Ecology Letters, 2011, 14(2): 101 − 112. doi: 10.1111/j.1461-0248.2010.01559.x [79] DAINESE M, LUNA D I, SITZIA T, et al. Testing scale-dependent effects of seminatural habitats on farmland biodiversity[J]. Ecological Applications, 2015, 25(6): 1681 − 1690. doi: 10.1890/14-1321.1 [80] BIRKHOFER K, DIEHL E, ANDERSSON J, et al. Ecosystem services—current challenges and opportunities for ecological research[J]. Frontiers in Ecology & Evolution, 2015, 2(87): 1 − 12. [81] MITCHELL M G E, BENNETT E M, GONZALEZ A. Agricultural landscape structure affects arthropod diversity and arthropod-derived ecosystem services[J]. Agriculture, Ecosystems & Environment, 2014, 192: 144 − 151. [82] HOWE C, SUICH H, VIRA B, et al. Creating win-wins from trade-offs? Ecosystem services for human well-being: A meta-analysis of ecosystem service trade-offs and synergies in the real world[J]. Global Environmental Change, 2014, 28: 263 − 275. doi: 10.1016/j.gloenvcha.2014.07.005 [83] SOMARRIBA E, CERDA R, OROZCO L, et al. Carbon stocks and cocoa yields in agroforestry systems of Central America[J]. Agriculture, Ecosystems & Environment, 2013, 173: 46 − 57. [84] ZHENG H, WANG L J, PENG W J, et al. Realizing the values of natural capital for inclusive, sustainable development: Informing China's new ecological development strategy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(17): 8623 − 8628. doi: 10.1073/pnas.1819501116 [85] EYVINDSON K, REPO A, MöNKKöNEN M. Mitigating forest biodiversity and ecosystem service losses in the era of bio-based economy[J]. Forest Policy and Economics, 2018, 92: 119 − 127. doi: 10.1016/j.forpol.2018.04.009 [86] WONG C P, JIANG B, BOHN T J, et al. Lake and wetland ecosystem services measuring water storage and local climate regulation[J]. Water Resources Research, 2017, 53(4): 3197 − 3223. doi: 10.1002/2016WR019445 [87] KENNEDY C M, HAWTHORNE P L, MITEVA D A, et al. Optimizing land use decision-making to sustain Brazilian agricultural profits, biodiversity and ecosystem services[J]. Biological Conservation, 2016, 204: 221 − 230. doi: 10.1016/j.biocon.2016.10.039 [88] SABATIER R, DOYEN L, TICHIT M. Heterogeneity and the trade-off between ecological and productive functions of agro-landscapes: a model of cattle-bird interactions in a grassland agroecosystem[J]. Agricultural Systems, 2014, 126: 38 − 49. doi: 10.1016/j.agsy.2013.02.008 [89] JOHNSON J A, RUNGE C F, SENAUER B, et al. Global agriculture and carbon trade-offs[J]. Proceedings of the National Academy of Sciences, 2014, 111(34): 12342 − 12347. doi: 10.1073/pnas.1412835111 [90] LU Z X, WEI Y P, XIAO H L, et al. Trade-offs between midstream agricultural production and downstream ecological sustainability in the Heihe River basin in the past half century[J]. Agricultural Water Management, 2015, 152: 233 − 242. doi: 10.1016/j.agwat.2015.01.022 [91] BROWNSON K, GUINESSEY E, CARRANZA M, et al. Community-Based Payments for Ecosystem Services (CB-PES): Implications of community involvement for program outcomes[J]. Ecosystem Services, 2019, 39: 100974. doi: 10.1016/j.ecoser.2019.100974 [92] CALLE A. Can short-term payments for ecosystem services deliver long-term tree cover change?[J]. Ecosystem Services, 2020, 42: 101084. doi: 10.1016/j.ecoser.2020.101084 [93] ZHENG H, ROBINSON B E, LIANG Y C, et al. Benefits, costs, and livelihood implications of a regional payment for ecosystem service program[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16681 − 16686. doi: 10.1073/pnas.1312324110 [94] CHAIGNEAU T, BROWN K, COULTHARD S, et al. Money, use and experience: Identifying the mechanisms through which ecosystem services contribute to wellbeing in coastal Kenya and Mozambique[J]. Ecosystem Services, 2019, 38: 100957. doi: 10.1016/j.ecoser.2019.100957 [95] RAUM S. A framework for integrating systematic stakeholder analysis in ecosystem services research: Stakeholder mapping for forest ecosystem services in the UK[J]. Ecosystem Services, 2018, 29: 170 − 184. doi: 10.1016/j.ecoser.2018.01.001