-
许多行业废水中会含有高浓度硝酸盐,硝酸盐进入水体后不仅会引起水体富营养化,对水生生物和人类的生产生活造成不利影响,且高浓度的硝酸盐容易被还原为亚硝酸盐,从而会对人体健康造成威胁[1]。目前,常用的污水脱氮工艺主要有物化法、生物法等,其中,物化方法主要有离子交换法、电渗析和反渗透等,但成本太高,很少使用;生物方法中的异养反硝化虽然已经得到广泛应用,也能取得不错的脱氮效果,但通常需要额外投加大量碳源,这些碳源会增加运营成本及工艺复杂性,此外,还会导致较高的污泥产量与温室气体排放。
硫自养反硝化技术作为一种低碳、低费、低污泥产量的反硝化技术逐渐受到研究人员的重视,近年来对其反应机理、参数调控及作用菌群的研究都取得了一定进步。文章总结了国内外学者对硫自养反硝化技术的研究进展,并对未来研究做出展望。
硫自养反硝化技术研究进展与展望
Research status and prospect of sulfur-autotrophic denitrification technology
-
摘要: 硫自养反硝化是一种具有低碳、低费、低污泥产量优势的脱氮技术。文章介绍了基于不同电子供体、pH、溶解氧(DO)和水力停留时间(HRT)等因素对硫自养反硝化反应效率的影响并对比了不同工艺的优缺点,阐述了硫自养反硝化工艺中微生物的群落特征,提出了现阶段存在的不足与缺陷,最后对其未来应用进行展望。Abstract: Sulfur autotrophic denitrification is a nitrogen removal technology with low carbon, low cost and low sludge yield. This paper introduces the influence of different electron donors, pH, dissolved oxygen (DO) and hydraulic residence time (HRT) on the efficiency of sulfur autotrophic denitrification, and compares the advantages and disadvantages of different processes in detail. It also describes the characteristics of microbial community in the sulfur autotrophic denitrification process, and proposes the deficiencies and defects at present stage. Finally, the future application of this technology is prospected.
-
[1] 廖京勇. 水体中硝酸盐和亚硝酸盐检测方法综述[J]. 广东化工, 2010, 37(5): 304 − 306. doi: 10.3969/j.issn.1007-1865.2010.05.136 [2] 邓旭亮, 王爱杰, 荣丽丽, 等. 硫自养反硝化技术研究现状与发展趋势[J]. 工业水处理, 2008(3): 13 − 16. doi: 10.3969/j.issn.1005-829X.2008.03.004 [3] DI CAPUA F, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 2019, 362: 922 − 937. doi: 10.1016/j.cej.2019.01.069 [4] QAMBRANI N A, OH S E. Effect of Dissolved Oxygen Tension and Agitation Rates on Sulfur-Utilizing Autotrophic Denitrification: Batch Tests[J]. Applied Biochemistry and Biotechnology, 2013, 169(1): 181 − 191. doi: 10.1007/s12010-012-9955-6 [5] MOON H S, SHIN D Y, NAM K, et al. A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier[J]. Chemosphere, 2008, 73(5): 723 − 728. doi: 10.1016/j.chemosphere.2008.06.065 [6] LIU L H, KOENIG A. Use of limestone for pH control in autotrophic denitrification: Batch experiments[J]. Process Biochemistry, 2002, 37(8): 885 − 893. doi: 10.1016/S0032-9592(01)00302-8 [7] SOARES M I M. Denitrification of groundwater with elemental sulfur[J]. Water Research, 2002, 36(5): 1392 − 1395. doi: 10.1016/S0043-1354(01)00326-8 [8] CAPUA F, PAPIRIO S, LENS P N L, et al. Chemolithotrophic denitrification in biofilm reactors[J]. Chemical Engineering Journal, 2015, 280: 643 − 657. doi: 10.1016/j.cej.2015.05.131 [9] SAHINKAYA E, DURSUN N. Use of elemental sulfur and thiosulfate as electron sources for water denitrification[J]. Bioprocess and Biosystems Engineering, 2015, 38(3): 531 − 541. doi: 10.1007/s00449-014-1293-3 [10] 姚鹏程, 袁怡, 龙震宇, 等 新型单质硫自养生物膜反应器脱氮性能研究 [J]. 现代化工, 2018, 38(5): 181-186. [11] 方文烨, 李祥, 黄勇, 等. 单质硫自养短程反硝化耦合厌氧氨氧化强化脱氮[J]. 环境科学, 2020, 41(8): 3699 − 3706. doi: 10.13227/j.hjkx.202002055 [12] PEDROUSO A, DEL RIO A V, MORALES N, et al. Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions[J]. Separation and Purification Technology, 2017, 186: 55 − 62. doi: 10.1016/j.seppur.2017.05.043 [13] BEZBARUAH AN, ZHANG TC. Performance of a constructed wetland with a sulfur/limestone denitrification section for wastewater nitrogen removal[J]. Environmental Science & Technology, 2003, 37(8): 1690 − 1697. [14] SIERRA-ALVAREZ R, BERISTAIN-CARDOSO R, SALAZAR M, et al. Chemolithotrophic denitrification with elemental sulfur for groundwater treatment[J]. Water Research, 2007, 41(6): 1253 − 1262. doi: 10.1016/j.watres.2006.12.039 [15] CAMPOS J L, CARVALHO S, PORTELA R, et al. Kinetics of denitrification using sulphur compounds: Effects of S/N ratio, endogenous and exogenous compounds[J]. Bioresource Technology, 2008, 99(5): 1293 − 1299. doi: 10.1016/j.biortech.2007.02.007 [16] JU X M, FIELD J A, SIERRA-ALVAREZ R, et al. Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur[J]. Biotechnology and Bioengineering, 2007, 96(6): 1073 − 1082. doi: 10.1002/bit.21197 [17] SAHINKAYA E, DURSUN N, KILIC A, et al. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production[J]. Water Research, 2011, 45(20): 6661 − 6667. doi: 10.1016/j.watres.2011.09.056 [18] MORAES B S, SOUZA T S O, FORESTI E. Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors[J]. Process Biochemistry, 2012, 47(9): 1395 − 1401. doi: 10.1016/j.procbio.2012.05.008 [19] CARDOSO R B, SIERRA-ALVAREZ R, ROWLETTE P, et al. Sulfide oxidation under chemolithoautotrophic denitrifying conditions[J]. Biotechnology and Bioengineering, 2006, 95(6): 1148 − 1157. doi: 10.1002/bit.21084 [20] LU H, HUANG H Q, YANG W M, et al. Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification[J]. Water Research, 2018, 133: 165 − 172. doi: 10.1016/j.watres.2018.01.022 [21] CHEN C, LIU L H, LEE D J, et al. Integrated simultaneous desulfurization and denitrification (ISDD) process at various COD/sulfate ratios[J]. Bioresource Technology, 2014, 155: 161 − 169. doi: 10.1016/j.biortech.2013.12.067 [22] XU X J, CHEN C, LEE D J, et al. Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: Modeling and experimental validation[J]. Bioresource Technology, 2013, 147: 202 − 211. doi: 10.1016/j.biortech.2013.07.113 [23] FURUMAI H, TAGUI H, FUJITA K. Effects of pH and alkalinity on sulfur-denitrification in a biological granular filter[J]. Water Science and Technology, 1996, 34(1-2): 355 − 362. doi: 10.2166/wst.1996.0391 [24] REYES-AVILA J S, RAZO-FLORES E, GOMEZ J. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification[J]. Water Research, 2004, 38(14-15): 3313 − 3321. doi: 10.1016/j.watres.2004.04.035 [25] CHEN C, REN N Q, WANG A J, et al. Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor[J]. Appl Microbiol Biotechnol, 2008, 78(6): 1057 − 1063. doi: 10.1007/s00253-008-1396-3 [26] YUAN Y, CHEN C, LIANG B, et al. Fine-tuning key parameters of an integrated reactor system for the simultaneous removal of COD, sulfate and ammonium and elemental sulfur reclamation[J]. Journal of Hazardous Materials, 2014, 269: 56 − 67. doi: 10.1016/j.jhazmat.2013.12.014 [27] WANG J, LU H, CHEN G H, et al. A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment[J]. Water Research, 2009, 43(9): 2363 − 2372. doi: 10.1016/j.watres.2009.02.037 [28] CAPUA F, AHORANTA S H, PAPIRIO S, et al. Impacts of sulfur source and temperature on sulfur-driven denitrification by pure and mixed cultures of Thiobacillus[J]. Process Biochemistry, 2016, 51(10): 1576 − 1584. doi: 10.1016/j.procbio.2016.06.010 [29] CAPUA F, LAKANIEMI A M, PUHAKKA J A, et al. High-rate thiosulfate-driven denitrification at pH lower than 5 in fluidized-bed reactor[J]. Chemical Engineering Journal, 2017, 310: 282 − 291. doi: 10.1016/j.cej.2016.10.117 [30] CAPUA F, MILONE I, LAKANIEMI A M, et al. High-rate autotrophic denitrification in a fluidized-bed reactor at psychrophilic temperatures[J]. Chemical Engineering Journal, 2017, 313: 591 − 598. doi: 10.1016/j.cej.2016.12.106 [31] SUN S S, LIU J, ZHANG M P, et al. Thiosulfate-driven autotrophic and mixotrophic denitrification processes for secondary effluent treatment: Reducing sulfate production and nitrous oxide emission[J]. Bioresource Technology, 2019, 300: 122651. [32] 杨军, 张翰澍, 李彭, 等. 无机硫源自养反硝化电子供体选择及研究现状[J]. 工业水处理, 2021, 41(6): 134 − 140. doi: 10.11894/iwt.2020-0591 [33] 周娅, 买文宁, 代吉华, 等. 硫代硫酸钠联合硫铁矿自养反硝化脱氮性能[J]. 中国环境科学, 2020, 40(5): 2081 − 2086. doi: 10.3969/j.issn.1000-6923.2020.05.026 [34] VIDAL S, ROCHA C, GALVAO H. A comparison of organic and inorganic carbon controls over biological denitrification in aquaria[J]. Chemosphere, 2002, 48(4): 445 − 451. doi: 10.1016/S0045-6535(02)00073-5 [35] CHEN D, YANG K, WANG H Y. Effects of important factors on hydrogen-based autotrophic denitrification in a bioreactor[J]. Desalination and Water Treatment, 2016, 57(8): 3482 − 3488. doi: 10.1080/19443994.2014.986533 [36] 杜锋伟. 曝气生物滤池和硫自养反硝化滤池污水深度脱氮研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011. [37] CHEN C, ZHANG R C, XU X J, et al. Enhanced performance of denitrifying sulfide removal process at high carbon to nitrogen ratios under micro-aerobic condition[J]. Bioresource Technology, 2017, 232: 417 − 422. doi: 10.1016/j.biortech.2017.02.031 [38] CHEN C A, WANG A J, REN N Q, et al. Enhancing denitrifying sulfide removal with functional strains under micro-aerobic condition[J]. Process Biochemistry, 2010, 45(6): 1007 − 1010. doi: 10.1016/j.procbio.2010.02.013 [39] CHEN C A, REN N Q, WANG A J, et al. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition[J]. Journal of Hazardous Materials, 2010, 179(1-3): 1147 − 1151. doi: 10.1016/j.jhazmat.2010.02.065 [40] WANG X W, ZHANG Y, ZHANG T T, et al. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: Characterization, pathway, and microbial community analysis[J]. Applied Microbiology and Biotechnology, 2016, 100(6): 2895 − 2905. doi: 10.1007/s00253-015-7146-4 [41] 许健, 尚琼琼, 李振伟, 等. 生活污水自养反硝化滤池深度脱氮研究[J]. 现代化工, 2016, 36(8): 138 − 141. doi: 10.16606/j.cnki.issn0253-4320.2016.08.033 [42] LIU C S, ZHAO D F, YAN L H, et al. Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria[J]. Bioresource Technology, 2015, 191: 332 − 336. doi: 10.1016/j.biortech.2015.05.027 [43] 于皓. 同步脱硫脱氮工艺中微生物群落结构及其功能解析 [D]. 哈尔滨: 哈尔滨工业大学, 2014. [44] 方圆, 贺艳妮, 杜耀, 等. 反硝化脱硫菌的代谢特征及其环境应用研究进展[J]. 环境污染与防治, 2015, 37(4): 84 − 88. doi: 10.15985/j.cnki.1001-3865.2015.04.017 [45] 王爱杰, 万春黎, 任南琪, 等. 一株同步脱氮脱硫菌的分离鉴定及其代谢特征[J]. 哈尔滨工业大学学报, 2008(4): 536 − 539. doi: 10.3321/j.issn:0367-6234.2008.04.006 [46] MAHMOOD Q, HU B L, CAI J, et al. Isolation of Ochrobactrum sp. QZ2 from sulfide and nitrite treatment system[J]. Journal of Hazardous Materials, 2009, 165(1-3): 558 − 565. doi: 10.1016/j.jhazmat.2008.10.021 [47] HUANG C, LIU Q, LI Z L, et al. Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions[J]. Water Research, 2021, 188: 116526. doi: 10.1016/j.watres.2020.116526 [48] ZHANG R C, XU X J, CHEN C, et al. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification[J]. Water Research, 2018, 143: 355 − 366. doi: 10.1016/j.watres.2018.06.053
计量
- 文章访问数: 8331
- HTML全文浏览数: 8331
- PDF下载数: 158
- 施引文献: 0