[1] 廖京勇. 水体中硝酸盐和亚硝酸盐检测方法综述[J]. 广东化工, 2010, 37(5): 304 − 306. doi: 10.3969/j.issn.1007-1865.2010.05.136
[2] 邓旭亮, 王爱杰, 荣丽丽, 等. 硫自养反硝化技术研究现状与发展趋势[J]. 工业水处理, 2008(3): 13 − 16. doi: 10.3969/j.issn.1005-829X.2008.03.004
[3] DI CAPUA F, PIROZZI F, LENS P N L, et al. Electron donors for autotrophic denitrification[J]. Chemical Engineering Journal, 2019, 362: 922 − 937. doi: 10.1016/j.cej.2019.01.069
[4] QAMBRANI N A, OH S E. Effect of Dissolved Oxygen Tension and Agitation Rates on Sulfur-Utilizing Autotrophic Denitrification: Batch Tests[J]. Applied Biochemistry and Biotechnology, 2013, 169(1): 181 − 191. doi: 10.1007/s12010-012-9955-6
[5] MOON H S, SHIN D Y, NAM K, et al. A long-term performance test on an autotrophic denitrification column for application as a permeable reactive barrier[J]. Chemosphere, 2008, 73(5): 723 − 728. doi: 10.1016/j.chemosphere.2008.06.065
[6] LIU L H, KOENIG A. Use of limestone for pH control in autotrophic denitrification: Batch experiments[J]. Process Biochemistry, 2002, 37(8): 885 − 893. doi: 10.1016/S0032-9592(01)00302-8
[7] SOARES M I M. Denitrification of groundwater with elemental sulfur[J]. Water Research, 2002, 36(5): 1392 − 1395. doi: 10.1016/S0043-1354(01)00326-8
[8] CAPUA F, PAPIRIO S, LENS P N L, et al. Chemolithotrophic denitrification in biofilm reactors[J]. Chemical Engineering Journal, 2015, 280: 643 − 657. doi: 10.1016/j.cej.2015.05.131
[9] SAHINKAYA E, DURSUN N. Use of elemental sulfur and thiosulfate as electron sources for water denitrification[J]. Bioprocess and Biosystems Engineering, 2015, 38(3): 531 − 541. doi: 10.1007/s00449-014-1293-3
[10] 姚鹏程, 袁怡, 龙震宇, 等 新型单质硫自养生物膜反应器脱氮性能研究 [J]. 现代化工, 2018, 38(5): 181-186.
[11] 方文烨, 李祥, 黄勇, 等. 单质硫自养短程反硝化耦合厌氧氨氧化强化脱氮[J]. 环境科学, 2020, 41(8): 3699 − 3706. doi: 10.13227/j.hjkx.202002055
[12] PEDROUSO A, DEL RIO A V, MORALES N, et al. Nitrite oxidizing bacteria suppression based on in-situ free nitrous acid production at mainstream conditions[J]. Separation and Purification Technology, 2017, 186: 55 − 62. doi: 10.1016/j.seppur.2017.05.043
[13] BEZBARUAH AN, ZHANG TC. Performance of a constructed wetland with a sulfur/limestone denitrification section for wastewater nitrogen removal[J]. Environmental Science & Technology, 2003, 37(8): 1690 − 1697.
[14] SIERRA-ALVAREZ R, BERISTAIN-CARDOSO R, SALAZAR M, et al. Chemolithotrophic denitrification with elemental sulfur for groundwater treatment[J]. Water Research, 2007, 41(6): 1253 − 1262. doi: 10.1016/j.watres.2006.12.039
[15] CAMPOS J L, CARVALHO S, PORTELA R, et al. Kinetics of denitrification using sulphur compounds: Effects of S/N ratio, endogenous and exogenous compounds[J]. Bioresource Technology, 2008, 99(5): 1293 − 1299. doi: 10.1016/j.biortech.2007.02.007
[16] JU X M, FIELD J A, SIERRA-ALVAREZ R, et al. Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur[J]. Biotechnology and Bioengineering, 2007, 96(6): 1073 − 1082. doi: 10.1002/bit.21197
[17] SAHINKAYA E, DURSUN N, KILIC A, et al. Simultaneous heterotrophic and sulfur-oxidizing autotrophic denitrification process for drinking water treatment: Control of sulfate production[J]. Water Research, 2011, 45(20): 6661 − 6667. doi: 10.1016/j.watres.2011.09.056
[18] MORAES B S, SOUZA T S O, FORESTI E. Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors[J]. Process Biochemistry, 2012, 47(9): 1395 − 1401. doi: 10.1016/j.procbio.2012.05.008
[19] CARDOSO R B, SIERRA-ALVAREZ R, ROWLETTE P, et al. Sulfide oxidation under chemolithoautotrophic denitrifying conditions[J]. Biotechnology and Bioengineering, 2006, 95(6): 1148 − 1157. doi: 10.1002/bit.21084
[20] LU H, HUANG H Q, YANG W M, et al. Elucidating the stimulatory and inhibitory effects of dissolved sulfide on sulfur-oxidizing bacteria (SOB) driven autotrophic denitrification[J]. Water Research, 2018, 133: 165 − 172. doi: 10.1016/j.watres.2018.01.022
[21] CHEN C, LIU L H, LEE D J, et al. Integrated simultaneous desulfurization and denitrification (ISDD) process at various COD/sulfate ratios[J]. Bioresource Technology, 2014, 155: 161 − 169. doi: 10.1016/j.biortech.2013.12.067
[22] XU X J, CHEN C, LEE D J, et al. Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: Modeling and experimental validation[J]. Bioresource Technology, 2013, 147: 202 − 211. doi: 10.1016/j.biortech.2013.07.113
[23] FURUMAI H, TAGUI H, FUJITA K. Effects of pH and alkalinity on sulfur-denitrification in a biological granular filter[J]. Water Science and Technology, 1996, 34(1-2): 355 − 362. doi: 10.2166/wst.1996.0391
[24] REYES-AVILA J S, RAZO-FLORES E, GOMEZ J. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification[J]. Water Research, 2004, 38(14-15): 3313 − 3321. doi: 10.1016/j.watres.2004.04.035
[25] CHEN C, REN N Q, WANG A J, et al. Simultaneous biological removal of sulfur, nitrogen and carbon using EGSB reactor[J]. Appl Microbiol Biotechnol, 2008, 78(6): 1057 − 1063. doi: 10.1007/s00253-008-1396-3
[26] YUAN Y, CHEN C, LIANG B, et al. Fine-tuning key parameters of an integrated reactor system for the simultaneous removal of COD, sulfate and ammonium and elemental sulfur reclamation[J]. Journal of Hazardous Materials, 2014, 269: 56 − 67. doi: 10.1016/j.jhazmat.2013.12.014
[27] WANG J, LU H, CHEN G H, et al. A novel sulfate reduction, autotrophic denitrification, nitrification integrated (SANI) process for saline wastewater treatment[J]. Water Research, 2009, 43(9): 2363 − 2372. doi: 10.1016/j.watres.2009.02.037
[28] CAPUA F, AHORANTA S H, PAPIRIO S, et al. Impacts of sulfur source and temperature on sulfur-driven denitrification by pure and mixed cultures of Thiobacillus[J]. Process Biochemistry, 2016, 51(10): 1576 − 1584. doi: 10.1016/j.procbio.2016.06.010
[29] CAPUA F, LAKANIEMI A M, PUHAKKA J A, et al. High-rate thiosulfate-driven denitrification at pH lower than 5 in fluidized-bed reactor[J]. Chemical Engineering Journal, 2017, 310: 282 − 291. doi: 10.1016/j.cej.2016.10.117
[30] CAPUA F, MILONE I, LAKANIEMI A M, et al. High-rate autotrophic denitrification in a fluidized-bed reactor at psychrophilic temperatures[J]. Chemical Engineering Journal, 2017, 313: 591 − 598. doi: 10.1016/j.cej.2016.12.106
[31] SUN S S, LIU J, ZHANG M P, et al. Thiosulfate-driven autotrophic and mixotrophic denitrification processes for secondary effluent treatment: Reducing sulfate production and nitrous oxide emission[J]. Bioresource Technology, 2019, 300: 122651.
[32] 杨军, 张翰澍, 李彭, 等. 无机硫源自养反硝化电子供体选择及研究现状[J]. 工业水处理, 2021, 41(6): 134 − 140. doi: 10.11894/iwt.2020-0591
[33] 周娅, 买文宁, 代吉华, 等. 硫代硫酸钠联合硫铁矿自养反硝化脱氮性能[J]. 中国环境科学, 2020, 40(5): 2081 − 2086. doi: 10.3969/j.issn.1000-6923.2020.05.026
[34] VIDAL S, ROCHA C, GALVAO H. A comparison of organic and inorganic carbon controls over biological denitrification in aquaria[J]. Chemosphere, 2002, 48(4): 445 − 451. doi: 10.1016/S0045-6535(02)00073-5
[35] CHEN D, YANG K, WANG H Y. Effects of important factors on hydrogen-based autotrophic denitrification in a bioreactor[J]. Desalination and Water Treatment, 2016, 57(8): 3482 − 3488. doi: 10.1080/19443994.2014.986533
[36] 杜锋伟. 曝气生物滤池和硫自养反硝化滤池污水深度脱氮研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011.
[37] CHEN C, ZHANG R C, XU X J, et al. Enhanced performance of denitrifying sulfide removal process at high carbon to nitrogen ratios under micro-aerobic condition[J]. Bioresource Technology, 2017, 232: 417 − 422. doi: 10.1016/j.biortech.2017.02.031
[38] CHEN C A, WANG A J, REN N Q, et al. Enhancing denitrifying sulfide removal with functional strains under micro-aerobic condition[J]. Process Biochemistry, 2010, 45(6): 1007 − 1010. doi: 10.1016/j.procbio.2010.02.013
[39] CHEN C A, REN N Q, WANG A J, et al. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition[J]. Journal of Hazardous Materials, 2010, 179(1-3): 1147 − 1151. doi: 10.1016/j.jhazmat.2010.02.065
[40] WANG X W, ZHANG Y, ZHANG T T, et al. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: Characterization, pathway, and microbial community analysis[J]. Applied Microbiology and Biotechnology, 2016, 100(6): 2895 − 2905. doi: 10.1007/s00253-015-7146-4
[41] 许健, 尚琼琼, 李振伟, 等. 生活污水自养反硝化滤池深度脱氮研究[J]. 现代化工, 2016, 36(8): 138 − 141. doi: 10.16606/j.cnki.issn0253-4320.2016.08.033
[42] LIU C S, ZHAO D F, YAN L H, et al. Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria[J]. Bioresource Technology, 2015, 191: 332 − 336. doi: 10.1016/j.biortech.2015.05.027
[43] 于皓. 同步脱硫脱氮工艺中微生物群落结构及其功能解析 [D]. 哈尔滨: 哈尔滨工业大学, 2014.
[44] 方圆, 贺艳妮, 杜耀, 等. 反硝化脱硫菌的代谢特征及其环境应用研究进展[J]. 环境污染与防治, 2015, 37(4): 84 − 88. doi: 10.15985/j.cnki.1001-3865.2015.04.017
[45] 王爱杰, 万春黎, 任南琪, 等. 一株同步脱氮脱硫菌的分离鉴定及其代谢特征[J]. 哈尔滨工业大学学报, 2008(4): 536 − 539. doi: 10.3321/j.issn:0367-6234.2008.04.006
[46] MAHMOOD Q, HU B L, CAI J, et al. Isolation of Ochrobactrum sp. QZ2 from sulfide and nitrite treatment system[J]. Journal of Hazardous Materials, 2009, 165(1-3): 558 − 565. doi: 10.1016/j.jhazmat.2008.10.021
[47] HUANG C, LIU Q, LI Z L, et al. Relationship between functional bacteria in a denitrification desulfurization system under autotrophic, heterotrophic, and mixotrophic conditions[J]. Water Research, 2021, 188: 116526. doi: 10.1016/j.watres.2020.116526
[48] ZHANG R C, XU X J, CHEN C, et al. Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification[J]. Water Research, 2018, 143: 355 − 366. doi: 10.1016/j.watres.2018.06.053