纳米银消费品中银的总迁移量分析

刘迎春, 王振国, 王卓. 纳米银消费品中银的总迁移量分析[J]. 生态毒理学报, 2021, 16(6): 279-288. doi: 10.7524/AJE.1673-5897.20200814005
引用本文: 刘迎春, 王振国, 王卓. 纳米银消费品中银的总迁移量分析[J]. 生态毒理学报, 2021, 16(6): 279-288. doi: 10.7524/AJE.1673-5897.20200814005
Liu Yingchun, Wang Zhenguo, Wang Zhuo. Total Migration Analysis of Silver in Consumer Products Containing Nanoparticles[J]. Asian journal of ecotoxicology, 2021, 16(6): 279-288. doi: 10.7524/AJE.1673-5897.20200814005
Citation: Liu Yingchun, Wang Zhenguo, Wang Zhuo. Total Migration Analysis of Silver in Consumer Products Containing Nanoparticles[J]. Asian journal of ecotoxicology, 2021, 16(6): 279-288. doi: 10.7524/AJE.1673-5897.20200814005

纳米银消费品中银的总迁移量分析

    作者简介: 刘迎春(1978-),女,博士,研究方向为消费品缺陷分析,E-mail:liuyc@dpac.gov.cn
    通讯作者: 王振国, E-mail: zhguo_wang@163.com 王卓, E-mail: wangzhuo77@mail.buct.edu.cn
  • 基金项目:

    北京市自然科学基金资助项目(7192106);中央高校基本科研业务费专项资金(XK1901)

  • 中图分类号: X171.5

Total Migration Analysis of Silver in Consumer Products Containing Nanoparticles

    Corresponding authors: Wang Zhenguo, zhguo_wang@163.com ;  Wang Zhuo, wangzhuo77@mail.buct.edu.cn
  • Fund Project:
  • 摘要: 纳米银(Ag NPs)因具有优异的抗菌特性被广泛应用于消费品中。这些消费产品的广泛使用可能会增加人类和环境暴露于银的风险,带来潜在的安全隐患。为了评价这些纳米银消费品中银的迁移行为,对国内11种市售纳米银消费品及银母粒材料中银的总含量进行了调查,并分析了这些产品在不同模拟液中的银总迁移量。11种纳米银消费品中的总银含量范围为0.1~19.8 μg·g-1。银母粒作为前体材料,银含量达23.3 μg·g-1。11种消费品除2种内衣外均在浸泡液中检测到银。这些消费品中的银总迁移量和浸泡时间呈正相关。所选的口罩、袜子的银总迁移量在4种汗液模拟液中不同。保鲜盒在水性和酸性模拟液中并未检测到银的迁出,在油性食物模拟液中的最大总迁移量为2 μg·mL-1。奶瓶、奶袋在用奶粉溶液浸泡后也检测到银的迁移。在经过30 d的浸泡后,产生银迁移的9种产品中有5种最大迁移率不到10%,其他4种产品中的最大迁移率达70%,表明长时间的浸泡对消费品中银的总迁移量的影响差别较大,不同消费品银的迁出量不同。本研究成果可为研究纳米银消费品中银的迁移对人体和环境的影响提供参考。
  • 加载中
  • Rezvani E, Rafferty A, McGuinness C, et al. Adverse effects of nanosilver on human health and the environment[J]. Acta Biomaterialia, 2019, 94:145-159
    Freestone I, Meeks N, Sax M, et al. The Lycurgus cup-A Roman nanotechnology[J]. Gold Bulletin, 2007, 40(4):270-277
    张亮, 杨卉芃, 冯安生, 等. 全球银矿资源概况及供需分析[J]. 矿产保护与利用, 2016(5):44-48 Zhang L, Yang H P, Feng A S, et al. Study on general situation and analysis of supply and demand of global sliver resource[J]. Conservation and Utilization of Mineral Resources, 2016

    (5):44-48(in Chinese)

    Yousaf H, Mehmood A, Ahmad K S, et al. Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents[J]. Materials Science and Engineering:C, 2020, 112:110901
    Guo Z C, Chen Y, Wang Y H, et al. Advances and challenges in metallic nanomaterial synthesis and antibacterial applications[J]. Journal of Materials Chemistry B, 2020, 8(22):4764-4777
    Hu G S, Jin W X, Chen Q Y, et al. Antibacterial activity of silver nanoparticles with different morphologies as well as their possible antibacterial mechanism[J]. Applied Physics A, 2016, 122(10):1-7
    Wu Y P, Yang Y, Zhang Z J, et al. A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism[J]. Advanced Powder Technology, 2018, 29(2):407-415
    Liao S J, Zhang Y P, Pan X H, et al. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa[J]. International Journal of Nanomedicine, 2019, 14:1469-1487
    You C G, Han C M, Wang X G, et al. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity[J]. Molecular Biology Reports, 2012, 39(9):9193-9201
    Vance M E, Kuiken T, Vejerano E P, et al. Nanotechnology in the real world:Redeveloping the nanomaterial consumer products inventory[J]. Beilstein Journal of Nanotechnology, 2015, 6:1769-1780
    Foss Hansen S, Heggelund L R, Revilla Besora P, et al. Nanoproducts:What is actually available to European consumers?[J]. Environmental Science:Nano, 2016, 3(1):169-180
    Mahdi S S, Vadood R, Nourdahr R. Study on the antimicrobial effect of nanosilver tray packaging of minced beef at refrigerator temperature[J]. Global Veterinaria, 2012, 9(3):284-289
    Dastjerdi R, Montazer M, Shahsavan S. A new method to stabilize nanoparticles on textile surfaces[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2009, 345(1-3):202-210
    Blaser S A, Scheringer M, MacLeod M, et al. Estimation of cumulative aquatic exposure and risk due to silver:Contribution of nano-functionalized plastics and textiles[J]. Science of the Total Environment, 2008, 390(2-3):396-409
    Pourzahedi L, Vance M, Eckelman M J. Life cycle assessment and release studies for 15 nanosilver-enabled consumer products:Investigating hotspots and patterns of contribution[J]. Environmental Science & Technology, 2017, 51(12):7148-7158
    Schäfer B, Brocke J V, Epp A, et al. State of the art in human risk assessment of silver compounds in consumer products:A conference report on silver and nanosilver held at the BfR in 2012[J]. Archives of Toxicology, 2013, 87(12):2249-2262
    Choi J I, Chae S J, Kim J M, et al. Potential silver nanoparticles migration from commercially available polymeric baby products into food simulants[J]. Food Additives & Contaminants:Part A, 2018, 35(5):996-1005
    Wagener S, Dommershausen N, Jungnickel H, et al. Textile functionalization and its effects on the release of silver nanoparticles into artificial sweat[J]. Environmental Science & Technology, 2016, 50(11):5927-5934
    Rogers K R, Navratilova J, Stefaniak A, et al. Characterization of engineered nanoparticles in commercially available spray disinfectant products advertised to contain colloidal silver[J]. Science of the Total Environment, 2018, 619-620:1375-1384
    Mackevica A, Olsson M E, Hansen S F. The release of silver nanoparticles from commercial toothbrushes[J]. Journal of Hazardous Materials, 2017, 322:270-275
    Mohan S, Princz J, Ormeci B, et al. Morphological transformation of silver nanoparticles from commercial products:Modeling from product incorporation, weathering through use scenarios, and leaching into wastewater[J]. Nanomaterials, 2019, 9(9):1258
    Bi Y Q, Westerband E I, Alum A, et al. Antimicrobial efficacy and life cycle impact of silver-containing food containers[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10):13086-13095
    Taylor A A, Khan M Y, Helbley J, et al. Safety evaluation of hair-dryers marketed as emitting nano silver particles[J]. Safety Science, 2017, 93:121-126
    Boholm M, Arvidsson R. Controversy over antibacterial silver:Implications for environmental and sustainability assessments[J]. Journal of Cleaner Production, 2014, 68:135-143
    Liao C Z, Li Y C, Tjong S. Bactericidal and cytotoxic properties of silver nanoparticles[J]. International Journal of Molecular Sciences, 2019, 20(2):449
    Ema M, Okuda H, Gamo M, et al. A review of reproductive and developmental toxicity of silver nanoparticles in laboratory animals[J]. Reproductive Toxicology, 2017, 67:149-164
    Moradi-Sardareh H, Basir H R G, Hassan Z M, et al. Toxicity of silver nanoparticles on different tissues of Balb/C mice[J]. Life Sciences, 2018, 211:81-90
    McGillicuddy E, Murray I, Kavanagh S, et al. Silver nanoparticles in the environment:Sources, detection and ecotoxicology[J]. Science of the Total Environment, 2017, 575:231-246
    高晓洁, 孔璐, 薛玉英. 纳米银的生物分布及其影响因素研究进展[J]. 生态毒理学报, 2016, 11(5):32-39

    Gao X J, Kong L, Xue Y Y. Biological distribution and its influence factor of silver nanoparticles:A review[J]. Asian Journal of Ecotoxicology, 2016, 11(5):32-39(in Chinese)

    江媛媛, 付庆龙, 施维林, 等. 抗菌消费品中纳米银含量调查及银的健康风险评价[J]. 生态毒理学报, 2016, 11(5):57-64

    Jiang Y Y, Fu Q L, Shi W L, et al. Contents of nanosilver in commercially antimicrobial products and silver health risk assessment to adult consumers[J]. Asian Journal of Ecotoxicology, 2016, 11(5):57-64(in Chinese)

    衣俊, 黄俊, 程金平. 纳米银在水环境中的环境行为和毒性效应研究进展[J]. 生态毒理学报, 2015, 10(1):101-109

    Yi J, Huang J, Cheng J P. Review of environmental behavior and toxicity of silver nanoparticles in the aquatic environment[J]. Asian Journal of Ecotoxicology, 2015, 10(1):101-109(in Chinese)

    中华人民共和国国家卫生和计划生育委员. 食品安全国家标准食品接触材料及制品迁移试验通则:GB 31604.1-2015[S]. 北京. 中国标准出版社, 2015
    Kulthong K, Srisung S, Boonpavanitchakul K, et al. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat[J]. Particle and Fibre Toxicology, 2010, 7:8
    Yan Y, Yang H F, Li J F, et al. Release behavior of nano-silver textiles in simulated perspiration fluids[J]. Textile Research Journal, 2012, 82(14):1422-1429
    马洁清, 徐坚琪, 赵凯, 等. 聚丙烯食品保鲜盒中纳米银迁移研究[J]. 安徽农业科学, 2016, 44(32):85-88

    , 163 Ma J Q, Xu J Q, Zhao K, et al. Migration of silver nanoparticles in polypropylene food packaging materials[J]. Journal of Anhui Agricultural Sciences, 2016, 44(32):85-88, 163(in Chinese)

    Stefaniak A B, Duling M G, Lawrence R B, et al. Dermal exposure potential from textiles that contain silver nanoparticles[J]. International Journal of Occupational and Environmental Health, 2014, 20(3):220-234
    Song Y, Li X, Du X. Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma[J]. European Respiratory Journal, 2009, 34(3):559-567
    Quadros M E, Marr L C. Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products[J]. Environmental Science & Technology, 2011, 45(24):10713-10719
    Borm P J A, Robbins D, Haubold S, et al. The potential risks of nanomaterials:A review carried out for ECETOC[J]. Particle and Fibre Toxicology, 2006, 3:11
    Bianco C, Kezic S, Crosera M, et al. In vitro percutaneous penetration and characterization of silver from silver-containing textiles[J]. International Journal of Nanomedicine, 2015, 10:1899-1908
    Addo Ntim S, Goodwin D G, Sung L, et al. Long-term wear effects on nanosilver release from commercially available food contact materials[J]. Food Additives & Contaminants:Part A, 2019, 36(11):1757-1768
    Limpiteeprakan P, Babel S, Lohwacharin J, et al. Release of silver nanoparticles from fabrics during the course of sequential washing[J]. Environmental Science and Pollution Research, 2016, 23(22):22810-22818
    Mitrano D M, Lombi E, Dasilva Y A R, et al. Unraveling the complexity in the aging of nanoenhanced textiles:A comprehensive sequential study on the effects of sunlight and washing on silver nanoparticles[J]. Environmental Science & Technology, 2016, 50(11):5790-5799
    Tortella G R, Rubilar O, Durán N, et al. Silver nanoparticles:Toxicity in model organisms as an overview of its hazard for human health and the environment[J]. Journal of Hazardous Materials, 2020, 390:121974
    Farkas J, Peter H, Christian P, et al. Characterization of the effluent from a nanosilver producing washing machine[J]. Environment International, 2011, 37(6):1057-1062
    Cleveland D, Long S E, Pennington P L, et al. Pilot estuarine mesocosm study on the environmental fate of silver nanomaterials leached from consumer products[J]. Science of the Total Environment, 2012, 421-422:267-272
    Nazarenko Y, Zhen H J, Han T, et al. Nanomaterial inhalation exposure from nanotechnology-based cosmetic powders:A quantitative assessment[J]. Journal of Nanoparticle Research, 2012, 14(11):1-14
  • 加载中
计量
  • 文章访问数:  2054
  • HTML全文浏览数:  2054
  • PDF下载数:  58
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-08-14
刘迎春, 王振国, 王卓. 纳米银消费品中银的总迁移量分析[J]. 生态毒理学报, 2021, 16(6): 279-288. doi: 10.7524/AJE.1673-5897.20200814005
引用本文: 刘迎春, 王振国, 王卓. 纳米银消费品中银的总迁移量分析[J]. 生态毒理学报, 2021, 16(6): 279-288. doi: 10.7524/AJE.1673-5897.20200814005
Liu Yingchun, Wang Zhenguo, Wang Zhuo. Total Migration Analysis of Silver in Consumer Products Containing Nanoparticles[J]. Asian journal of ecotoxicology, 2021, 16(6): 279-288. doi: 10.7524/AJE.1673-5897.20200814005
Citation: Liu Yingchun, Wang Zhenguo, Wang Zhuo. Total Migration Analysis of Silver in Consumer Products Containing Nanoparticles[J]. Asian journal of ecotoxicology, 2021, 16(6): 279-288. doi: 10.7524/AJE.1673-5897.20200814005

纳米银消费品中银的总迁移量分析

    通讯作者: 王振国, E-mail: zhguo_wang@163.com ;  王卓, E-mail: wangzhuo77@mail.buct.edu.cn
    作者简介: 刘迎春(1978-),女,博士,研究方向为消费品缺陷分析,E-mail:liuyc@dpac.gov.cn
  • 1. 北京化工大学化学学院, 化工资源有效利用国家重点实验室, 北京 100029;
  • 2. 中国标准化研究院, 北京 100191
基金项目:

北京市自然科学基金资助项目(7192106);中央高校基本科研业务费专项资金(XK1901)

摘要: 纳米银(Ag NPs)因具有优异的抗菌特性被广泛应用于消费品中。这些消费产品的广泛使用可能会增加人类和环境暴露于银的风险,带来潜在的安全隐患。为了评价这些纳米银消费品中银的迁移行为,对国内11种市售纳米银消费品及银母粒材料中银的总含量进行了调查,并分析了这些产品在不同模拟液中的银总迁移量。11种纳米银消费品中的总银含量范围为0.1~19.8 μg·g-1。银母粒作为前体材料,银含量达23.3 μg·g-1。11种消费品除2种内衣外均在浸泡液中检测到银。这些消费品中的银总迁移量和浸泡时间呈正相关。所选的口罩、袜子的银总迁移量在4种汗液模拟液中不同。保鲜盒在水性和酸性模拟液中并未检测到银的迁出,在油性食物模拟液中的最大总迁移量为2 μg·mL-1。奶瓶、奶袋在用奶粉溶液浸泡后也检测到银的迁移。在经过30 d的浸泡后,产生银迁移的9种产品中有5种最大迁移率不到10%,其他4种产品中的最大迁移率达70%,表明长时间的浸泡对消费品中银的总迁移量的影响差别较大,不同消费品银的迁出量不同。本研究成果可为研究纳米银消费品中银的迁移对人体和环境的影响提供参考。

English Abstract

参考文献 (47)

返回顶部

目录

/

返回文章
返回