氮营养形态和Ni2+浓度对三角褐指藻的影响
Effects of Nitrogen Forms and Ni2+ Concentration on Phaeodactylum tricornutum Bohlin
-
摘要: 近海海水中的氮营养元素和镍(Ni)对浮游植物的生长均有较大的影响,但它们对浮游植物的共同影响却研究较少。本文利用浮游植物荧光仪(Phyto-PAM)研究了在不同氮源下(硝态氮、尿素),不同Ni2+浓度处理对三角褐指藻(Phaeodactylum tricornutum Bohlin)叶绿素a(Chl a)、光能转化效率(Fv/Fm)和最大电子传递速率(rETRmax)的影响。结果表明,与对照组相比,2种氮源下,低浓度(10 μg·L-1)Ni2+处理对三角褐指藻Chl a含量均有显著的促进作用(P<0.05),且尿素氮源高于硝酸盐氮源(P<0.05)。但是,当Ni2+浓度>1 mg·L-1后,均抑制三角褐指藻Chl a含量,且抑制程度呈现递增趋势(P<0.05)。应用Graphpad Prism8.0计算Ni2+对三角褐指藻不同胁迫时间的Chl a、Fv/Fm和rETRmax半抑制浓度(EC50)。硝酸钠为氮源时,不同时间的Chl a EC50值均低于尿素氮源。以上结果表明,随着近岸海区尿素浓度增加,三角褐指藻生长能显著被低浓度的Ni2+所促进,对高浓度Ni2+的耐受性增强,进而可能影响近海海洋初级生产力和浮游植物群落结构。Abstract: The effects of nitrogen nutrients and nickel (Ni) in offshore waters on the growth of phytoplankton was widely studied separately, but their interaction has not been studied. In this paper, the phytoplankton fluorometer (Phyto-PAM) was used to study the chlorophyll a (Chl a) concentration and light energy conversion efficiency (Fv/Fm) and the maximum electron transfer rate (rETRmax) in Phaeodactylum tricornutum Bohlin under different nitrogen sources (nitrate, urea) and different Ni2+ concentrations. The results showed that compared with the control group, under both of two nitrogens, 10 μg·L-1 Ni2+ treatment group had a significantly positive effect on the Chl a content of P. tricornutum Bohlin (P<0.05), and the growth in urea was higher than that in nitrate (P<0.05). However, P. tricornutum Bohlin Chl a content was depressed in higher Ni2+ (>1 mg·L-1) incubation, and the inhibition of P. tricornutum Bohlin Chl a content was significantly increased with the increasing of Ni2+ concentration. Graphpad Prism8.0 was used to calculate the half inhibitory concentration (EC50) of Ni2+ on Chl a, Fv/Fm and rETRmax of P. tricornutum Bohlin at different stress times. The Chl a EC50 values at different times in nitrate were lower than that in urea. The above results indicate that the increasing input of urea in coastal waters may increase the growth of P. tricornutum Bohlin in low Ni2+ concentration and tolerance of P. tricornutum Bohlin in high Ni2+ concentration, which in turn affects marine primary productivity and phytoplankton community.
-
Key words:
- Ni2+ /
- urea /
- sodium nitrate /
- Phaeodactylum tricornutum Bohlin /
- half inhibitory concentration (EC50) /
- tolerance
-
-
徐环, 张桂成, 李悦悦, 等. 近海溶解有机氮对浮游植物生物可利用性研究进展[J]. 海洋湖沼通报, 2016(4):59-67 Xu H, Zhang G C, Li Y Y, et al. Progress in bioavailability of dissolved organic nitrogen to phytoplankton in the coastal ecosystems[J]. Transactions of Oceanology and Limnology, 2016 (4):59-67(in Chinese)
王明华. 镉、镍在海洋浮游食物链上的传递及其生理生化效应[D]. 厦门:厦门大学, 2007:91-97 Wang M H. The transfer of cadmium or nickel along the planktonic food-chain and its physio-biochemical effect[D]. Xiamen:Xiamen University, 2007:91 -97(in Chinese)
Huang X G, Li S X, Liu F J, et al. Regulated effects of Prorocentrum donghaiense Lu exudate on nickel bioavailability when cultured with different nitrogen sources[J]. Chemosphere, 2018, 197:57-64 黄旭光, 王大志, 王明华, 等. 氮、磷对两种微藻吸附与吸收镍的影响[J]. 海洋与湖沼, 2006, 37(2):105-110 Huang X G, Wang D Z, Wang M H, et al. Effects of N, P additions on absorption and uptake of nickel in two microalgae[J]. Oceanologia et Limnologia Sinica, 2006, 37(2):105-110(in Chinese)
侯秀娟. 浅谈水中重金属的污染来源和危害及去除方法[J]. 饮料工业, 2019, 22(5):73-77 Hou X J. Discussion on the source, harm and removal method of heavy metals in water[J]. Beverage Industry, 2019, 22(5):73-77(in Chinese)
陈兰洲, 汪静, 武艳芳, 等. 纤细席藻对重金属镍胁迫的响应研究[J]. 中南民族大学学报:自然科学版, 2017, 36(4):45-50 Chen L Z, Wang J, Wu Y F, et al. The responses of Phormidium tenue on the stress of heavy metal nickel[J]. Journal of South-Central University for Nationalities:Natural Science Edition, 2017, 36(4):45-50(in Chinese)
姜彬慧, 林碧琴. 镍对纤维藻(Ankistrodesmus sp.)毒性作用研究[J]. 环境保护科学, 1995, 21(4):26-31 ,77 Jiang B H, Lin B Q. Effect of nickel on Ankistrodesmus sp. in the physiological and biochemical process:An initial report on studies of the nickels toxicological effects on Ankistrodesmus sp.[J]. Environmental Protection Science, 1995, 21(4):26-31,77(in Chinese)
姜彬慧, 林碧琴. 纤维藻(Ankistrodesmus sp.)对镍的吸附、吸收作用及镍对其细胞形态结构影响[J]. 应用与环境生物学报, 2000, 6(6):535-541 Jiang B H, Lin B Q. Adsorption and absorption of nickel by Ankistrodesmus sp. and effect of nickel on morphlogical structure of its cell[J]. Chinese Journal of Applied and Environmental Biology, 2000, 6(6):535-541(in Chinese)
黄旭光, 刘凤娇, 李顺兴. 东海原甲藻在不同氮源下脲酶活性及生长率对镍离子浓度的响应[J]. 上海环境科学, 2013(6):237-240 许珍, 殷大聪, 陈进, 等. 温度和光强对4种常见水华藻叶绿素荧光特性的影响[J]. 长江科学院院报, 2017, 34(6):39-44 Xu Z, Yin D C, Chen J, et al. Effects of temperature and illumination on chlorophyll fluorescence characteristics of four common bloom algae[J]. Journal of Yangtze River Scientific Research Institute, 2017, 34(6):39-44(in Chinese)
王琳, 刘冉, 李文慧, 等. 不同重金属离子胁迫对斜生栅藻生长及叶绿素荧光特性的影响[J]. 生态与农村环境学报, 2015, 31(5):743-747 Wang L, Liu R, Li W H, et al. Effects of stresses of different heavy metals on growth and chlorophy Ⅱ fluorescence of Scendesmus obliquus[J]. Journal of Ecology and Rural Environment, 2015, 31(5):743-747(in Chinese)
Strauch S M, Richter P R, Haag F W M, et al. Delayed fluorescence, steady state fluorescence, photosystem Ⅱ quantum yield as endpoints for toxicity evaluation of Cu2+ and Ag+[J]. Environmental and Experimental Botany, 2016, 130:174-180 Huang X G, Lin X C, Li S X, et al. The influence of urea and nitrate nutrients on the bioavailability and toxicity of nickel to Prorocentrum donghaiense (Dinophyta) and Skeletonema costatum (Bacillariophyta)[J]. Aquatic Toxicology, 2016, 181:22-28 Glibert P M, Azanza R, Burford M, et al. Ocean urea fertilization for carbon credits poses high ecological risks[J]. Marine Pollution Bulletin, 2008, 56(6):1049-1056 Belisle B S, Steffen M M, Pound H L, et al. Urea in Lake Erie:Organic nutrient sources as potentially important drivers of phytoplankton biomass[J]. Journal of Great Lakes Research, 2016, 42(3):599-607 Maleva M, Borisova G, Chukina N, et al. High dose of urea enhances the nickel and copper toxicity in Brazilian elodea (Egeria densa Planch. Casp.)[J]. Brazilian Journal of Botany, 2016, 39(3):965-972 Zambelli B, Mazzei L, Ciurli S. Intrinsic disorder in the nickel-dependent urease network[J]. Progress in Molecular Biology and Translational Science, 2020, 174:307-330 Wen L S, Jiann K T, Santschi P H. Physicochemical speciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea[J]. Marine Chemistry, 2006, 101(1-2):104-129 Martínez-Ruiz E B, Martínez-Jerónimo F. How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis aeruginosa exposed to nickel stress[J]. Ecotoxicology and Environmental Safety, 2016, 133:36-46 Zeer-Wanklyn C J, Zamble D B. Microbial nickel:Cellular uptake and delivery to enzyme centers[J]. Current Opinion in Chemical Biology, 2017, 37:80-88 孙秀丽, 余冲, 赵富强, 等. 重金属对微藻的毒性效应研究进展[J]. 广东化工, 2021, 48(4):49-51 Sun X L, Yu C, Zhao F Q, et al. Research progress on the toxic effects of heavy metals on microalgae[J]. Guangdong Chemical Industry, 2021, 48(4):49-51(in Chinese)
Shen L, Li Z F, Wang J J, et al. Characterization of extracellular polysaccharide/protein contents during the adsorption of Cd(Ⅱ) by Synechocystis sp. PCC6803[J]. Environmental Science and Pollution Research, 2018, 25(21):20713-20722 Pochodylo A L, Aristilde L. Molecular dynamics of stability and structures in phytochelatin complexes with Zn, Cu, Fe, Mg, and Ca:Implications for metal detoxification[J]. Environmental Chemistry Letters, 2017, 15(3):495-500 Svane S, Sigurdarson J J, Finkenwirth F, et al. Inhibition of urease activity by different compounds provides insight into the modulation and association of bacterial nickel import and ureolysis[J]. Scientific Reports, 2020, 10:8503 Barcelos J P Q, Reis H P G, Godoy C V, et al. Impact of foliar nickel application on urease activity, antioxidant metabolism and control of powdery mildew (Microsphaera diffusa) in soybean plants[J]. Plant Pathology, 2018, 67(7):1502-1513 -

计量
- 文章访问数: 2420
- HTML全文浏览数: 2420
- PDF下载数: 51
- 施引文献: 0