纳米二氧化钛对浮萍生长和生理特征的影响
Effects of TiO2-NPs on Growth and Physiological Characteristics of Lemna minor
-
摘要: 为了揭示纳米二氧化钛(TiO2-NPs)对水生植物生长和生理特征的影响,选取浮萍为受试物种,输入锐钛矿型、金红石型和P25混合型(m(锐钛矿):m(金红石)=4:1)3种晶型的TiO2-NPs,测定不同浓度(CK:0 mg·L-1,T25:25 mg·L-1,T50:50 mg·L-1,T75:75 mg·L-1,T100:100 mg·L-1)对浮萍叶片数、叶面积、叶绿素含量、超氧化物歧化酶(SOD)活性、过氧化物酶(POD)活性和过氧化氢酶(CAT)活性的影响。结果表明:(1)锐钛矿处理中,不同浓度处理均抑制浮萍生长,T25和T50处理对叶绿素a含量产生抑制作用,T75和T100处理对叶绿素a含量产生促进作用;不同浓度处理对叶绿素b和总叶绿素含量产生抑制作用,对SOD和POD活性产生促进作用;T25和T75处理对CAT活性产生促进作用,T50和T100处理对CAT活性产生抑制作用。(2)金红石处理中,不同浓度处理促进浮萍生长;对叶绿素a含量产生促进作用;对叶绿素b和总叶绿素含量产生抑制作用,T25、T50和T100处理对SOD活性产生促进作用,T75处理对SOD活性产生抑制作用;不同浓度处理对POD活性产生促进作用;T25、T75和T100处理对CAT活性产生抑制作用,T50处理对CAT活性产生促进作用。(3)P25处理中,不同浓度处理促进浮萍生长,对叶绿素a含量产生促进作用,对叶绿素b含量产生抑制作用,随着浓度的增加,抑制作用增强;T25、T50和T100处理对总叶绿素含量产生促进作用,T75处理对总叶绿素含量产生抑制作用;对SOD和POD活性均产生促进作用,T25、T50和T100处理对CAT活性产生抑制作用,T75处理对CAT活性产生促进作用。锐钛矿型TiO2-NPs会抑制浮萍生长,金红石型和P25混合型TiO2-NPs会促进浮萍生长。Abstract: To reveal the influence of TiO2-NPs on the growth and physiological characteristics of aquatic plants, Lemna minor was selected as the subject species and the three crystal types of TiO2-NPs (CK:0 mg·L-1, T25:25 mg·L-1, T50:50 mg·L-1, T75:75 mg·L-1, T100:100 mg·L-1) were input, which are anatase type, rutile type and P25 mixture type (anatase:rutile=4:1), and the effect of TiO2-NPs on the indexes of leaf number, leaf area, chlorophyll content, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) of Lemna minor were measured. The results indicate that:(1) In the anatase type treated group, the growth of Lemna minor was inhibited by different concentration treatment, T25 and T50 treatment inhibited chlorophyll a content, T75 and T100 treatment promoted chlorophyll a content; different concentration treatment inhibited chlorophyll b and total chlorophyll content, and promoted SOD and POD activity; T25 and T75 treatment promoted CAT activity, T50 and T100 treatment inhibited CAT activity. (2) In the rutile type, treatment with different concentrations promoted the growth of Lemna minor, promoted chlorophyll a content and inhibited chlorophyll b and total chlorophyll content; T25, T50 and T100 treatment promoted SOD activity, T75 treatment inhibited SOD activity; different concentration treatment promoted POD activity; T25, T75 and T100 treatment inhibited CAT activity, T50 treatment promoted CAT activity. (3) In the P25 mixture type, treatment with different concentrations promoted the growth of Lemna minor, promoted chlorophyll a content, inhibited chlorophyll b content and with the increase of concentration, the inhibitory effect increased; T25, T50 and T100 treatment promoted total chlorophyll content, T75 treatment inhibited total chlorophyll content; SOD and POD activity were promoted by different concentration treatment; T25, T50 and T100 treatment inhibited CAT activity, T75 treatment promoted CAT activity.
-
Key words:
- TiO2-NPs /
- Lemna minor /
- growth inhibition /
- enzyme activity
-
-
高嫄. 纳米TiO2、纳米CuO对青萍生长影响及其机理探讨[D]. 淄博:山东理工大学, 2012:2-7 Gao Y. Effect and mechanism of TiO2 and CuO nano-particles on Lemna minor growth[D]. Zibo:Shandong University of Technology, 2012 :2-7(in Chinese)
Zuo G H, Kang S G, Xiu P, et al. Interactions between proteins and carbon-based nanoparticles:Exploring the origin of nanotoxicity at the molecular level[J]. Small, 2013, 9(9-10):1546-1556 Nel A, Xia T, Mädler L, et al. Toxic potential of materials at the nanolevel[J]. Science, 2006, 311(5761):622-627 Gottschalk F, Nowack B. The release of engineered nanomaterials to the environment[J]. Journal of Environmental Monitoring, 2011, 13(5):1145-1155 Gottschalk F, Sonderer T, Scholz R W, et al. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions[J]. Environmental Science & Technology, 2009, 43(24):9216-9222 Westerhoff P, Song G X, Hristovski K, et al. Occurrence and removal of titanium at full scale wastewater treatment plants:Implications for TiO2 nanomaterials[J]. Journal of Environmental Monitoring, 2011, 13(5):1195-1203 Lu P J, Ho I C, Lee T C. Induction of sister chromatid exchanges and micronuclei by titanium dioxide in Chinese hamster ovary-K1 cells[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 1998, 414(1-3):15-20 Rahman Q, Lohani M, Dopp E, et al. Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts[J]. Environmental Health Perspectives, 2002, 110(8):797-800 Gurr J R, Wang A S S, Chen C H, et al. Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells[J]. Toxicology, 2005, 213(1-2):66-73 Wang J J, Sanderson B J S, Wang H. Cyto- and genotoxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells[J]. Mutation Research, 2007, 628(2):99-106 Kang S J, Kim B M, Lee Y J, et al. Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes[J]. Environmental and Molecular Mutagenesis, 2008, 49(5):399-405 Huang S, Chueh P J, Lin Y W, et al. Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure[J]. Toxicology and Applied Pharmacology, 2009, 241(2):182-194 Singh S, Shi T M, Duffin R, et al. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2:Role of the specific surface area and of surface methylation of the particles[J]. Toxicology and Applied Pharmacology, 2007, 222(2):141-151 Miralles P, Church T L, Harris A T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants[J]. Environmental Science & Technology, 2012, 46(17):9224-9239 Monica R C, Cremonini R. Nanoparticles and higher plants[J]. Caryologia, 2009, 62(2):161-165 王一翔. 纳米二氧化钛对三角褐指藻的毒性效应研究[D]. 北京:清华大学, 2016:16-19 Wang Y X. The toxic effect of nanoscale titanium dioxide (nTiO2) on Phacodactylum tricornutum[D]. Beijing:Tsinghua University, 2016 :16-19(in Chinese)
兰丽贞, 赵群芬, 金凯星. 环境中纳米TiO2对拟南芥生长及相关基因表达的影响[J]. 核农学报, 2018, 32(2):389-398 Lan L Z, Zhao Q F, Jin K X. Effects of nano-TiO2 on growth and gene expression in Arabidopsis thaliana[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(2):389-398(in Chinese)
Suzuki R, Ishimaru T. An improved method for the determination of phytoplankton chlorophyll using N, N-dimethylformamide[J]. Journal of the Oceanographical Society of Japan, 1990, 46(4):190-194 吴碧莹. 纳米二氧化钛对水稻的毒性及代谢影响初探[D]. 杭州:浙江大学, 2017:16-17 Wu B Y. The toxicity and metabolic effects of TiO2 nano particles on rice (Oryza sativa L.)[D]. Hangzhou:Zhejiang University, 2017 :16-17(in Chinese)
高俊凤. 植物生理学实验指导[M]. 北京:高等教育出版社, 2006:217-218 Gao Junfeng. Experimental Guidance of Plant Physiology[M]. Beijing:Higher Education Press, 2006:217 -218(in Chinese)
Donaldson K, Stone V, MacNee W. The Toxicology of Ultrafine Particles[M]//Particulate Matter:Properties and Effects upon Health. Garland Science, 2020:115-129 Zhai G S, Walters K S, Peate D W, et al. Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar[J]. Environmental Science & Technology Letters, 2014, 1(2):146-151 成婕, 谢尔瓦妮古丽·苏来曼, 邓祥元, 等. 纳米二氧化钛对斜生栅藻的毒性效应研究[J]. 江西农业大学学报, 2014, 36(1):238-242 Cheng J, Sulaiman X, Deng X Y, et al. Toxic effects of nanoparticle TiO2 on Scenedesmus obliquus[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(1):238-242(in Chinese)
文双喜, 王毅力. 水培实验中不同粒径纳米TiO2对金鱼藻种子发芽和植株生长和生理的影响[J]. 生态毒理学报, 2018, 13(6):268-277 Wen S X, Wang Y L. Effect of nano titanium dioxide with different particle size on the seed germination and plant growth and physiology of Ceratophyllum demersum in hydroponic experiments[J]. Asian Journal of Ecotoxicology, 2018, 13(6):268-277(in Chinese)
Asli S, Neumann P M. Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport[J]. Plant, Cell & Environment, 2009, 32(5):577-584 Lynch I, Salvati A, Dawson K A. Protein-nanoparticle interactions:What does the cell see?[J]. Nature Nanotechnology, 2009, 4(9):546-547 李雅洁, 王静, 崔益斌, 等. 纳米氧化锌和二氧化钛对斜生栅藻的毒性效应[J]. 农业环境科学学报, 2013, 32(6):1122-1127 Li Y J, Wang J, Cui Y B, et al. Ecotoxicological effects of ZnO and TiO2 nanoparticles on microalgae Scenedesmus oblignus[J]. Journal of Agro-Environment Science, 2013, 32(6):1122-1127(in Chinese)
Stebbing A R D. Hormesis-The stimulation of growth by low levels of inhibitors[J]. Science of the Total Environment, 1982, 22(3):213-234 Wang Y, Tang X X, Li Y Q, et al. Stimulation effect of anthracene on marine microalgae growth[J]. Chinese Journal of Applied Ecology, 2002, 13(3):343-346 Li F M, Liang Z, Zheng X, et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production[J]. Aquatic Toxicology, 2015, 158:1-13 Perreault F, Oukarroum A, Pirastru L, et al. Evaluation of copper oxide nanoparticles toxicity using chlorophyll a fluorescence imaging in Lemna gibba[J]. Journal of Botany, 2010, 2010:1-9 Prasad M N V, Malec P, Waloszek A, et al. Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation[J]. Plant Science, 2001, 161(5):881-889 侯东颖, 冯佳, 谢树莲. 纳米二氧化钛胁迫对普生轮藻的毒性效应[J]. 环境科学学报, 2012, 32(6):1481-1486 Hou D Y, Feng J, Xie S L. Toxic effects of nanoparticle TiO2 stress on Chara vulgaris L.[J]. Acta Scientiae Circumstantiae, 2012, 32(6):1481-1486(in Chinese)
李子杰, 姜文君, 于明, 等. LaCl3对轮藻光合色素含量及抗氧化酶活性的影响[J]. 中国稀土学报, 2006, 24(S2):192-195 Li Z J, Jiang W J, Yu M, et al. Effects of LaCl3 on photosynthetic pigment contents and antioxidative enzyme activities in chara[J]. Journal of the Chinese Rare Earth Society, 2006, 24(S2):192-195(in Chinese)
武鹏鹏. Nano TiO2和土霉素对斜生栅藻的毒性效应研究[D]. 石家庄:河北科技大学, 2019:22-23 Wu P P. Toxic effects of nano TiO2 and oxytetracycline on Scenedesmus obliquus[D]. Shijiazhuang:Hebei University of Science and Technology, 2019 :22-23(in Chinese)
孙羿, 王华, 吕丰訸, 等. 纳米TiO2对小球藻和新月菱形藻的毒性研究[J]. 现代农业科技, 2016(1):217-219, 223 Sun Y, Wang H, Lv F H, et al. Toxicity of TiO2 nanoparticles to Chlorella sp. and Nitzschia closterium[J]. Modern Agricultural Science and Technology, 2016(1):217-219, 223(in Chinese)
Hong F S, Zhou J, Liu C, et al. Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach[J]. Biological Trace Element Research, 2005, 105(1-3):269-279 Wang H H, Kou X M, Pei Z G, et al. Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants[J]. Nanotoxicology, 2011, 5(1):30-42 Tan X M, Lin C, Fugetsu B. Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells[J]. Carbon, 2009, 47(15):3479-3487 Fang W C, Kao C H. Enhanced peroxidase activity in rice leaves in response to excess iron, copper and zinc[J]. Plant Science, 2000, 158(1-2):71-76 王震宇, 于晓莉, 高冬梅, 等. 人工合成纳米TiO2和MWCNTs对玉米生长及其抗氧化系统的影响[J]. 环境科学, 2010, 31(2):480-487 Wang Z Y, Yu X L, Gao D M, et al. Effect of nano-rutile TiO2 and multiwalled carbon nanotubes on the growth of maize (Zea mays L.) seedlings and the relevant antioxidant response[J]. Environmental Science, 2010, 31(2):480-487(in Chinese)
Cui Y, Zhao N. Oxidative stress and change in plant metabolism of maize (Zea mays L.) growing in contaminated soil with elemental sulfur and toxic effect of zinc[J]. Plant, Soil and Environment, 2011, 57(1):34-39 Song G L, Gao Y, Wu H, et al. Physiological effect of anatase TiO2 nanoparticles on Lemna minor[J]. Environmental Toxicology and Chemistry, 2012, 31(9):2147-2152 -

计量
- 文章访问数: 1976
- HTML全文浏览数: 1976
- PDF下载数: 97
- 施引文献: 0