天然有机质对TiO2纳米颗粒与PCB-77藻类毒性影响及致毒机理

李青, 张帅, 王济. 天然有机质对TiO2纳米颗粒与PCB-77藻类毒性影响及致毒机理[J]. 生态毒理学报, 2021, 16(6): 244-255. doi: 10.7524/AJE.1673-5897.20210511002
引用本文: 李青, 张帅, 王济. 天然有机质对TiO2纳米颗粒与PCB-77藻类毒性影响及致毒机理[J]. 生态毒理学报, 2021, 16(6): 244-255. doi: 10.7524/AJE.1673-5897.20210511002
Li Qing, Zhang Shuai, Wang Ji. Effect and Mechanism of Natural Organic Matter on Toxicity of TiO2 Nanoparticles and PCB-77 to Algae[J]. Asian journal of ecotoxicology, 2021, 16(6): 244-255. doi: 10.7524/AJE.1673-5897.20210511002
Citation: Li Qing, Zhang Shuai, Wang Ji. Effect and Mechanism of Natural Organic Matter on Toxicity of TiO2 Nanoparticles and PCB-77 to Algae[J]. Asian journal of ecotoxicology, 2021, 16(6): 244-255. doi: 10.7524/AJE.1673-5897.20210511002

天然有机质对TiO2纳米颗粒与PCB-77藻类毒性影响及致毒机理

    作者简介: 李青(1995-),女,硕士研究生,研究方向为环境化学与环境毒理学,E-mail:2307473960@qq.com
    通讯作者: 张帅, E-mail: ka-kui@163.com
  • 基金项目:

    国家自然科学基金资助项目(41807336);贵州省科技计划项目(黔科合基础[2020]1Y189;黔科合LH字[2017]7345号;黔科合平台人才[2018]576919);贵州师范大学2016年博士科研启动项目;贵州省世界一流学科建设计划项目:喀斯特生态环境学科(黔教科研发[2019]125号);学术学位授权点-环境科学与工程(硕)(0418001)

  • 中图分类号: X171.5

Effect and Mechanism of Natural Organic Matter on Toxicity of TiO2 Nanoparticles and PCB-77 to Algae

    Corresponding author: Zhang Shuai, ka-kui@163.com
  • Fund Project:
  • 摘要: 为探究天然有机质(natural organic matter,NOM)对纳米二氧化钛(TiO2)与3,3',4,4'-四氯联苯(3,3',4,4'-tetrachlorobiphenyl,PCB-77)藻类毒性影响及致毒机理,以小球藻为实验受试生物,测定了纳米TiO2与PCB-77单独及复合暴露在NOM存在与不存在条件下对小球藻生长、细胞形态、活性氧(reactive oxygen species,ROS)和丙二醛(malondialdehyde,MDA)含量及超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性的影响。结果表明,所有暴露组均对小球藻的生长有一定的抑制作用。团聚沉降实验结果说明,纳米TiO2在水环境中易团聚,PCB-77和NOM通过影响纳米TiO2团聚进而影响小球藻的生长,这些团聚体附着在藻细胞表面,导致细胞间相互遮蔽,影响藻细胞光合作用和细胞呼吸,进而影响藻细胞生长,与实时定量PCR检测基因的结果一致。用透射电子显微镜(transmission electron microscope,TEM)观察发现,纳米TiO2单独暴露与PCB-77复合暴露在NOM存在与不存在条件下,藻细胞周围附着纳米TiO2,有一部分进入藻细胞内部,使细胞膜破损、质壁分离、细胞器结构不清晰以及出现电子致密体和空泡结构,小球藻细胞形态遭到损坏,这是直接接触造成的物理损伤。通过测定藻细胞内ROS和MDA含量可知,暴露在纳米TiO2中产生ROS含量最高,所受的氧化损伤最大,氧化胁迫是纳米TiO2致毒机理之一。因此,NOM对纳米TiO2与PCB-77藻类致毒机理的影响归纳为吸附团聚作用所造成的遮蔽效应、直接接触的物理损伤和产生大量ROS造成的氧化损伤。
  • 加载中
  • Zheng D, Wang N, Wang X M, et al. Effects of the interaction of TiO2 nanoparticles with bisphenol A on their physicochemical properties and in vitro toxicity[J]. Journal of Hazardous Materials, 2012, 199-200:426-432
    Yan J, Lin B C, Hu C L, et al. The combined toxicological effects of titanium dioxide nanoparticles and bisphenol A on zebrafish embryos[J]. Nanoscale Research Letters, 2014, 9(1):406
    Serdar B, LeBlanc W G, Norris J M, et al. Potential effects of polychlorinated biphenyls (PCBs) and selected organochlorine pesticides (OCPs) on immune cells and blood biochemistry measures:A cross-sectional assessment of the NHANES 2003-2004 data[J]. Environmental Health, 2014, 13:114
    Dong H, Su C Y, Xia X M, et al. Polychlorinated biphenyl quinone-induced genotoxicity, oxidative DNA damage and γ-H2AX formation in HepG2 cells[J]. Chemico-Biological Interactions, 2014, 212:47-55
    Attia S M, Ahmad S F, Okash R M, et al. Aroclor 1254-induced genotoxicity in male gonads through oxidatively damaged DNA and inhibition of DNA repair gene expression[J]. Mutagenesis, 2014, 29(5):379-384
    Liu H M, Amy G. Modeling partitioning and transport interactions between natural organic matter and polynuclear aromatic hydrocarbons in groundwater[J]. Environmental Science & Technology, 1993, 27(8):1553-1562
    Ottofuelling S, Kammer F V D, Hofmann T. Nanoparticles in the aquatic environment-aggregation behavior of TiO2nanoparticles studied in a simplified aqueous test matrix (SAM)[J]. Journal of Geophysical Research, 2007, 9:08876
    Sadiq I M, Pakrashi S, Chandrasekaran N, et al. Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species:Scenedesmus sp. and Chlorella sp.[J]. Journal of Nanoparticle Research, 2011, 13(8):3287-3299
    Lin D H, Ji J, Long Z F, et al. The influence of dissolved and surface-bound humic acid on the toxicity of TiO2 nanoparticles to Chlorella sp.[J]. Water Research, 2012, 46(14):4477-4487
    Blum D J W, Speece R E. Determining chemical toxicity to aquatic species[J]. Environmental Science & Technology, 1990, 24(3):284-293
    Li X, Zhang T, Min X M, et al. Toxicity of aromatic compounds to Tetrahymena estimated by microcalorimetry and QSAR[J]. Aquatic Toxicology, 2010, 98(4):322-327
    刘畅, 吴文娟, 李建宏, 等. 不同光强对阿特拉津和百草枯藻类毒性的影响[J]. 环境科学学报, 2014, 34(5):1339-1343

    Liu C, Wu W J, Li J H, et al. Effects of different light intensities on the toxicities of atrazine and paraquat to algae[J]. Acta Scientiae Circumstantiae, 2014, 34(5):1339-1343(in Chinese)

    Wang Z, Wang S, Peijnenburg W J G M. Prediction of joint algal toxicity of nano-CeO2/nano-TiO2 and florfenicol:Independent action surpasses concentration addition[J]. Chemosphere, 2016, 156:8-13
    Long Z F, Ji J, Yang K, et al. Systematic and quantitative investigation of the mechanism of carbon nanotubes toxicity toward algae[J]. Environmental Science & Technology, 2012, 46(15):8458-8466
    Zhang L Q, Lei C, Chen J J, et al. Effect of natural and synthetic surface coatings on the toxicity of multiwalled carbon nanotubes toward green algae[J]. Carbon, 2015, 83:198-207
    Perreault F, Oukarroum A, Melegari S P, et al. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii[J]. Chemosphere, 2012, 87(11):1388-1394
    Cui Y, Liu W, Xie W P, et al. Investigation of the effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on apoptosis and cell cycle in a zebrafish (Danio rerio) liver cell line[J]. International Journal of Environmental Research and Public Health, 2015, 12(12):15673-15682
    Fan J H, Cui Y B, Zhou Y, et al. The effect of nutrition pattern alteration on Chlorella pyrenoidosa growth, lipid biosynthesis-related gene transcription[J]. Bioresource Technology, 2014, 164:214-220
    Sun X, Xu N J, Jiang L Z, et al. Gene expression profiles of the heterotrophic microalga Chlorella pyrenoidosa F-9[J]. Genetics and Molecular Research, 2014, 13(4):8411-8420
    Zhang S, Deng R, Lin D H, et al. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae[J]. Nanotoxicology, 2017, 11(9-10):1115-1126
    Mishra S, Srivastava S, Tripathi R D, et al. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L.[J]. Plant Physiology and Biochemistry, 2006, 44(1):25-37
    Phyu Y L, Palmer C G, Warne M S J, et al. Assessing the chronic toxicity of atrazine, permethrin, and chlorothalonil to the cladoceran Ceriodaphnia cf. dubia in laboratory and natural river water[J]. Archives of Environmental Contamination and Toxicology, 2013, 64(3):419-426
    Kabra A N, Ji M K, Choi J, et al. Toxicity of atrazine and its bioaccumulation and biodegradation in a green microalga, Chlamydomonas mexicana[J]. Environmental Science and Pollution Research, 2014, 21(21):12270-12278
    Romih T, Jemec A, Novak S, et al. FTIR microscopy reveals distinct biomolecular profile of crustacean digestive glands upon subtoxic exposure to ZnO nanoparticles[J]. Nanotoxicology, 2016, 10(4):462-470
    Yu C X, Irudayaraj J. Spectroscopic characterization of microorganisms by Fourier transform infrared microspectroscopy[J]. Biopolymers, 2005, 77(6):368-377
    Lu W D, Alam M A, Pan Y, et al. A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production[J]. Bioresource Technology, 2016, 218:123-128
    Gelfand P, Smith R J, Stavitski E, et al. Characterization of protein structural changes in living cells using time-lapsed FTIR imaging[J]. Analytical Chemistry, 2015, 87(12):6025-6031
    da Silva Ferreira V, ConzFerreira M E, Lima L M T R, et al. Green production of microalgae-based silver chloride nanoparticles with antimicrobial activity against pathogenic bacteria[J]. Enzyme and Microbial Technology, 2017, 97:114-121
    Zhao J, Wang Z Y, Dai Y H, et al. Mitigation of CuO nanoparticle-induced bacterial membrane damage by dissolved organic matter[J]. Water Research, 2013, 47(12):4169-4178
    Zhu X D, Wang Y J, Qin W X, et al. Distribution of free radicals and intermediates during the photodegradation of polychlorinated biphenyls strongly affected by cosolvents and TiO2 catalyst[J]. Chemosphere, 2016, 144:628-634
    Schmitt D, Kumke M, Seibel F, et al. The influence of natural organic matter (NOM) on the desorption kinetics of pyrene and naphthalene from quartz[J]. Chemosphere, 1999, 38(12):2807-2824
    Aruoja V, Dubourguier H C, Kasemets K, et al. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata[J]. Science of the Total Environment, 2009, 407(4):1461-1468
    冀静. 腐殖酸对纳米颗粒藻类毒性的影响及机理[D]. 杭州:浙江大学, 2011:32-34 Ji J. The effect and its mechanism of humic acid on the algal toxicity of nanoparticles[D]. Hangzhou:Zhejiang University, 2011:32

    -34(in Chinese)

  • 加载中
计量
  • 文章访问数:  2168
  • HTML全文浏览数:  2168
  • PDF下载数:  102
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-05-11
李青, 张帅, 王济. 天然有机质对TiO2纳米颗粒与PCB-77藻类毒性影响及致毒机理[J]. 生态毒理学报, 2021, 16(6): 244-255. doi: 10.7524/AJE.1673-5897.20210511002
引用本文: 李青, 张帅, 王济. 天然有机质对TiO2纳米颗粒与PCB-77藻类毒性影响及致毒机理[J]. 生态毒理学报, 2021, 16(6): 244-255. doi: 10.7524/AJE.1673-5897.20210511002
Li Qing, Zhang Shuai, Wang Ji. Effect and Mechanism of Natural Organic Matter on Toxicity of TiO2 Nanoparticles and PCB-77 to Algae[J]. Asian journal of ecotoxicology, 2021, 16(6): 244-255. doi: 10.7524/AJE.1673-5897.20210511002
Citation: Li Qing, Zhang Shuai, Wang Ji. Effect and Mechanism of Natural Organic Matter on Toxicity of TiO2 Nanoparticles and PCB-77 to Algae[J]. Asian journal of ecotoxicology, 2021, 16(6): 244-255. doi: 10.7524/AJE.1673-5897.20210511002

天然有机质对TiO2纳米颗粒与PCB-77藻类毒性影响及致毒机理

    通讯作者: 张帅, E-mail: ka-kui@163.com
    作者简介: 李青(1995-),女,硕士研究生,研究方向为环境化学与环境毒理学,E-mail:2307473960@qq.com
  • 1. 贵州师范大学地理与环境科学学院, 贵阳 550025;
  • 2. 贵州省喀斯特山地生态环境国家重点实验室培育基地, 贵阳 550025
基金项目:

国家自然科学基金资助项目(41807336);贵州省科技计划项目(黔科合基础[2020]1Y189;黔科合LH字[2017]7345号;黔科合平台人才[2018]576919);贵州师范大学2016年博士科研启动项目;贵州省世界一流学科建设计划项目:喀斯特生态环境学科(黔教科研发[2019]125号);学术学位授权点-环境科学与工程(硕)(0418001)

摘要: 为探究天然有机质(natural organic matter,NOM)对纳米二氧化钛(TiO2)与3,3',4,4'-四氯联苯(3,3',4,4'-tetrachlorobiphenyl,PCB-77)藻类毒性影响及致毒机理,以小球藻为实验受试生物,测定了纳米TiO2与PCB-77单独及复合暴露在NOM存在与不存在条件下对小球藻生长、细胞形态、活性氧(reactive oxygen species,ROS)和丙二醛(malondialdehyde,MDA)含量及超氧化物歧化酶(superoxide dismutase,SOD)和过氧化氢酶(catalase,CAT)活性的影响。结果表明,所有暴露组均对小球藻的生长有一定的抑制作用。团聚沉降实验结果说明,纳米TiO2在水环境中易团聚,PCB-77和NOM通过影响纳米TiO2团聚进而影响小球藻的生长,这些团聚体附着在藻细胞表面,导致细胞间相互遮蔽,影响藻细胞光合作用和细胞呼吸,进而影响藻细胞生长,与实时定量PCR检测基因的结果一致。用透射电子显微镜(transmission electron microscope,TEM)观察发现,纳米TiO2单独暴露与PCB-77复合暴露在NOM存在与不存在条件下,藻细胞周围附着纳米TiO2,有一部分进入藻细胞内部,使细胞膜破损、质壁分离、细胞器结构不清晰以及出现电子致密体和空泡结构,小球藻细胞形态遭到损坏,这是直接接触造成的物理损伤。通过测定藻细胞内ROS和MDA含量可知,暴露在纳米TiO2中产生ROS含量最高,所受的氧化损伤最大,氧化胁迫是纳米TiO2致毒机理之一。因此,NOM对纳米TiO2与PCB-77藻类致毒机理的影响归纳为吸附团聚作用所造成的遮蔽效应、直接接触的物理损伤和产生大量ROS造成的氧化损伤。

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回