植物修复中代表性浮水植物移除重金属的能力和特性比较

史永富, 詹倩云, 张龙飞, 王梦圆, 叶洪丽, 黄宣运, 杨光昕, 蔡友琼. 植物修复中代表性浮水植物移除重金属的能力和特性比较[J]. 生态毒理学报, 2022, 17(3): 316-325. doi: 10.7524/AJE.1673-5897.20210611002
引用本文: 史永富, 詹倩云, 张龙飞, 王梦圆, 叶洪丽, 黄宣运, 杨光昕, 蔡友琼. 植物修复中代表性浮水植物移除重金属的能力和特性比较[J]. 生态毒理学报, 2022, 17(3): 316-325. doi: 10.7524/AJE.1673-5897.20210611002
Shi Yongfu, Zhan Qianyun, Zhang Longfei, Wang Mengyuan, Ye Hongli, Huang Xuanyun, Yang Guangxin, Cai Youqiong. Comparison of Ability and Characteristics of Representative Floating Water Plants to Remove Heavy Metals in Phytoremediation[J]. Asian journal of ecotoxicology, 2022, 17(3): 316-325. doi: 10.7524/AJE.1673-5897.20210611002
Citation: Shi Yongfu, Zhan Qianyun, Zhang Longfei, Wang Mengyuan, Ye Hongli, Huang Xuanyun, Yang Guangxin, Cai Youqiong. Comparison of Ability and Characteristics of Representative Floating Water Plants to Remove Heavy Metals in Phytoremediation[J]. Asian journal of ecotoxicology, 2022, 17(3): 316-325. doi: 10.7524/AJE.1673-5897.20210611002

植物修复中代表性浮水植物移除重金属的能力和特性比较

    作者简介: 史永富(1983—),男,博士,副研究员,研究方向为水产品质量安全与控制,E-mail:xyzmn530@sina.com
    通讯作者: 蔡友琼, E-mail: caiyouqiong@163.com
  • 基金项目:

    农业部公益性行业科研专项(201503108)

  • 中图分类号: X171.5

Comparison of Ability and Characteristics of Representative Floating Water Plants to Remove Heavy Metals in Phytoremediation

    Corresponding author: Cai Youqiong, caiyouqiong@163.com
  • Fund Project:
  • 摘要: 为研究浮水植物对水环境中重金属的移除能力和特性,按照污水综合排放标准限量浓度的1倍、2倍、5倍和10倍分别设置4个暴露水平,对凤眼莲、圆心萍、肚兜萍、小浮萍、大浮萍、大薸和柳叶空心菜7种浮水植物去除水体环境中重金属的能力进行了比较分析,并确定凤眼莲、大薸和肚兜萍(质量比为1:1:1)混合植株对重金属的去除效果最佳。结果表明,暴露水平为污水综合排放标准限量浓度的2倍时,混合植株对镉、铜、锌、铬和镍5种重金属的累积去除率达到最高,分别为75.86%、82.97%、72.19%、80.06%和75.92%;暴露水平为污水综合排放标准限量浓度的5倍时,混合植株对铅的累积去除率达到最高,为76.01%。本研究所确定的混合植株对水环境中重金属的累积去除效应明显,可以为水环境中重金属污染的修复、淡水养殖水产品过程中的重金属防控以及提升水产品的质量安全提供基础数据和技术支持。
  • 加载中
  • Järup L. Hazards of heavy metal contamination[J]. British Medical Bulletin, 2003, 68:167-182
    Li X D, Lee S L, Wong S C, et al. The study of metal contamination in urban soils of Hong Kong using a GIS-based approach[J]. Environmental Pollution, 2004, 129(1):113-124
    Ikem A, Egiebor N O, Nyavor K. Trace elements in water, fish and sediment from Tuskegee Lake, southeastern USA[J]. Water, Air, and Soil Pollution, 2003, 149(1-4):51-75
    刘金金, 张玉平, 张芬. 上海市养殖池塘沉积物中重金属分布及生态风险评价[J]. 上海海洋大学学报, 2021, 30(3):501-514

    Liu J J, Zhang Y P, Zhang F. Distribution and ecological risk assessment of heavy metals in the sediment of aquaculture ponds in Shanghai[J]. Journal of Shanghai Ocean University, 2021, 30(3):501-514(in Chinese)

    Huang Y Y, Zhou B H, Li N, et al. Spatial-temporal analysis of selected industrial aquatic heavy metal pollution in China[J]. Journal of Cleaner Production, 2019, 238(5):117944
    Nriagu J O, Pacyna J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals[J]. Nature, 1988, 333(6169):134-139
    翟苗苗, 尚琪. 环境镉暴露对人群健康损伤的研究进展[J]. 卫生研究, 2007, 36(2):255-257

    Zhai M M, Shang Q. Research advance of environmental cadmium exposure on human health damage[J]. Journal of Hygiene Research, 2007, 36(2):255-257(in Chinese)

    黄强, 赵静, 孙小童. 莱州常见海洋贝类中重金属污染情况调查评估[J]. 安徽农业科学, 2015, 43(4):300-303

    Huang Q, Zhao J, Sun X T. Investigation and assessment of heavy metal contamination in marine shellfishes from Laizhou[J]. Journal of Anhui Agricultural Sciences, 2015, 43(4):300-303(in Chinese)

    胡耐根. 重金属铅、汞污染对人的影响[J]. 科技信息, 2009(35):1186-1187
    谷阳光, 高富代. 我国省会城市土壤重金属含量分布与健康风险评价[J]. 环境化学, 2017, 36(1):62-71

    Gu Y G, Gao F D. Spatial distribution and health risk assessment of heavy metals in provincial capital cities, China[J]. Environmental Chemistry, 2017, 36(1):62-71(in Chinese)

    程家丽, 马彦宁, 刘婷婷, 等. 中国部分海产品重金属污染特征及健康风险评价[J]. 卫生研究, 2017, 46(1):148-154

    Cheng J L, Ma Y N, Liu T T, et al. Accumulation and health risks of heavy metals in the seafood from China[J]. Journal of Hygiene Research, 2017, 46(1):148-154(in Chinese)

    Huang Y Y, Zhou B H, Li N, et al. Spatial-temporal analysis of selected industrial aquatic heavy metal pollution in China[J]. Journal of Cleaner Production, 2019, 238:117944
    Chen L, Liang S, Liu M D, et al. Trans-provincial health impacts of atmospheric mercury emissions in China[J]. Nature Communications, 2019, 10:1484
    Khan M U, Malik R N, Muhammad S. Human health risk from heavy metal via food crops consumption with wastewater irrigation practices in Pakistan[J]. Chemosphere, 2013, 93(10):2230-2238
    Mehmood A, Aslam Mirza M, Aziz Choudhary M, et al. Spatial distribution of heavy metals in crops in a wastewater irrigated zone and health risk assessment[J]. Environmental Research, 2019, 168:382-388
    Mishra V K, Tripathi B D. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes[J]. Bioresource Technology, 2008, 99(15):7091-7097
    Tavakoli O, Goodarzi V, Saeb M R, et al. Competitive removal of heavy metal ions from squid oil under isothermal condition by CR11 chelate ion exchanger[J]. Journal of Hazardous Materials, 2017, 334:256-266
    Hao J X, Ji L D, Li C L, et al. Rapid, efficient and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in situ reduction and precipitation of graphene oxide[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 88:137-145
    Hao L T, Zhang B G, Feng C P, et al. Microbial vanadium (Ⅴ) reduction in groundwater with different soils from vanadium ore mining areas[J]. Chemosphere, 2018, 202:272-279
    Bano A, Hussain J, Akbar A, et al. Biosorption of heavy metals by obligate halophilic fungi[J]. Chemosphere, 2018, 199:218-222
    Taseidifar M, Makavipour F, Pashley R M, et al. Removal of heavy metal ions from water using ion flotation[J]. Environmental Technology & Innovation, 2017, 8:182-190
    Olguín E J, Sánchez-Galván G. Heavy metal removal in phytofiltration and phycoremediation:The need to differentiate between bioadsorption and bioaccumulation[J]. New Biotechnology, 2012, 30(1):3-8
    Mook W T, Chakrabarti M H, Aroua M K, et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology:A review[J]. Desalination, 2012, 285:1-13
    叶雪均, 邱树敏. 3种草本植物对Pb-Cd污染水体的修复研究[J]. 环境工程学报, 2010, 4(5):1023-1026

    Ye X J, Qiu S M. Phytoremedication of Pb-Cd combined pollution by three aquatic plants[J]. Chinese Journal of Environmental Engineering, 2010, 4(5):1023-1026(in Chinese)

    王忠全, 温琰茂, 黄兆霆, 等. 几种植物处理含重金属废水的适应性研究[J]. 生态环境, 2005, 14(4):540-544

    Wang Z Q, Wen Y M, Huang Z T, et al. Adaptability of several plant to heavy metal wastewater treatment[J]. Ecology and Environmental Sciences, 2005, 14(4):540-544(in Chinese)

    Radu V M, Ionescu P, Diacu E, et al. Removal of heavy metals from aquatic environments using water hyacinth and water lettuce[J]. Revista de Chimie, 2018, 68(12):2765-2767
    Carvalho K M, Martin D F. Removal of aqueous selenium by four aquatic plants[J]. Journal of Aquatic Plant Management, 2001, 39:33-36
    闫保明, 李晓将. 水生植物在河湖水治理中的应用[J]. 西北水电, 2020(S2):22-25 Yan B M, Li X J. Application of aquatic plants in river and lake water treatment[J]. Northwest Hydropower, 2020

    (S2):22-25(in Chinese)

    黄珂, 吴铁明, 吴哲, 等. 水生植物在园林中的应用现状初探[J]. 林业调查规划, 2005, 30(5):94-97

    Huang K, Wu T M, Wu Z, et al. Preliminary discussion on application of hydrophyte to gardens[J]. Forest Inventory and Planning, 2005, 30(5):94-97(in Chinese)

    焦轶男, 朱宏. 水体重金属污染植物修复研究进展[J]. 生物学杂志, 2014, 31(1):71-74

    Jiao Y N, Zhu H. Research progress in phytoremediation for heavy metal pollution[J]. Journal of Biology, 2014, 31(1):71-74(in Chinese)

    Odjegba V J, Fasidi I O. Phytoremediation of heavy metals by Eichhornia crassipes[J]. The Environmentalist, 2007, 27(3):349-355
    Khosravi M, Ganji M T, Rakhshaee R. Toxic effect of Pb, Cd, Ni and Zn on Azolla filiculoides in the international Anzali wetland[J]. International Journal of Environmental Science & Technology, 2005, 2(1):35-40
    邱海源. 微波溶样电感耦合等离子体质谱法测定9种植物体中6种微量元素[J]. 计量与测试技术, 2011, 38(4):4-5

    Qiu H Y. Determination of 6 trace rare earth elements in 9 kinds of plants by microwave acid digestion ICP MS[J]. Metrology & Measurement Technique, 2011, 38(4):4-5(in Chinese)

    商侃侃, 张国威, 蒋云. 54种木本植物对土壤Cu、Pb、Zn的提取能力[J]. 生态学杂志, 2019, 38(12):3723-3730

    Shang K K, Zhang G W, Jiang Y. The phytoextraction ability of 54 woody species on Cu, Pb, Zn in soil[J]. Chinese Journal of Ecology, 2019, 38(12):3723-3730(in Chinese)

    韦朝阳, 陈同斌. 重金属污染植物修复技术的研究与应用现状[J]. 地球科学进展, 2002, 17(6):833-839

    Wei C Y, Chen T B. An preview on the status of research and application of heavy metal phytormediation[J]. Advance in Earth Sciences, 2002, 17(6):833-839(in Chinese)

    Chaney R L, Malik M, Li Y M, et al. Phytoremediation of soil metals[J]. Current Opinion in Biotechnology, 1997, 8(3):279-284
    潘妍. 柽柳Lea基因抗重金属功能及与eIF5A共转化山新杨的研究[D]. 哈尔滨:东北林业大学, 2010:39-41 Pan Y. Study of heavy metal tolerance of Lea gene and cotransformation of Lea and eIF5A into Populus davidiana Dode×

    ;P. ollena Lauche[D]. Harbin:Northeast Forestry University, 2010:39-41(in Chinese)

    潘春龙, 何谨. 水生植物在含Cr废水处理中的作用[J]. 云南环境科学, 2006, 25(3):34-35

    , 47 Pan C L, He J. Effect of hydrophyte on treatment of wastewater with chromium[J]. Yunnan Environmental Science, 2006, 25(3):34-35, 47(in Chinese)

  • 加载中
计量
  • 文章访问数:  2493
  • HTML全文浏览数:  2493
  • PDF下载数:  111
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-06-11
史永富, 詹倩云, 张龙飞, 王梦圆, 叶洪丽, 黄宣运, 杨光昕, 蔡友琼. 植物修复中代表性浮水植物移除重金属的能力和特性比较[J]. 生态毒理学报, 2022, 17(3): 316-325. doi: 10.7524/AJE.1673-5897.20210611002
引用本文: 史永富, 詹倩云, 张龙飞, 王梦圆, 叶洪丽, 黄宣运, 杨光昕, 蔡友琼. 植物修复中代表性浮水植物移除重金属的能力和特性比较[J]. 生态毒理学报, 2022, 17(3): 316-325. doi: 10.7524/AJE.1673-5897.20210611002
Shi Yongfu, Zhan Qianyun, Zhang Longfei, Wang Mengyuan, Ye Hongli, Huang Xuanyun, Yang Guangxin, Cai Youqiong. Comparison of Ability and Characteristics of Representative Floating Water Plants to Remove Heavy Metals in Phytoremediation[J]. Asian journal of ecotoxicology, 2022, 17(3): 316-325. doi: 10.7524/AJE.1673-5897.20210611002
Citation: Shi Yongfu, Zhan Qianyun, Zhang Longfei, Wang Mengyuan, Ye Hongli, Huang Xuanyun, Yang Guangxin, Cai Youqiong. Comparison of Ability and Characteristics of Representative Floating Water Plants to Remove Heavy Metals in Phytoremediation[J]. Asian journal of ecotoxicology, 2022, 17(3): 316-325. doi: 10.7524/AJE.1673-5897.20210611002

植物修复中代表性浮水植物移除重金属的能力和特性比较

    通讯作者: 蔡友琼, E-mail: caiyouqiong@163.com
    作者简介: 史永富(1983—),男,博士,副研究员,研究方向为水产品质量安全与控制,E-mail:xyzmn530@sina.com
  • 1. 中国水产科学研究院东海水产研究所, 农业农村部水产品质量监督检验测试中心(上海), 农业农村部东海渔业资源开发利用重点实验室, 上海 200090;
  • 2. 四川省成都市市场监督管理局, 成都 610041;
  • 3. 上海海洋大学食品学院, 上海 201306
基金项目:

农业部公益性行业科研专项(201503108)

摘要: 为研究浮水植物对水环境中重金属的移除能力和特性,按照污水综合排放标准限量浓度的1倍、2倍、5倍和10倍分别设置4个暴露水平,对凤眼莲、圆心萍、肚兜萍、小浮萍、大浮萍、大薸和柳叶空心菜7种浮水植物去除水体环境中重金属的能力进行了比较分析,并确定凤眼莲、大薸和肚兜萍(质量比为1:1:1)混合植株对重金属的去除效果最佳。结果表明,暴露水平为污水综合排放标准限量浓度的2倍时,混合植株对镉、铜、锌、铬和镍5种重金属的累积去除率达到最高,分别为75.86%、82.97%、72.19%、80.06%和75.92%;暴露水平为污水综合排放标准限量浓度的5倍时,混合植株对铅的累积去除率达到最高,为76.01%。本研究所确定的混合植株对水环境中重金属的累积去除效应明显,可以为水环境中重金属污染的修复、淡水养殖水产品过程中的重金属防控以及提升水产品的质量安全提供基础数据和技术支持。

English Abstract

参考文献 (38)

返回顶部

目录

/

返回文章
返回