聚苯乙烯纳米塑料暴露对小鼠肠道免疫的影响

贾田江, 陈怡, 张俊波, 李奡, 黄沛力. 聚苯乙烯纳米塑料暴露对小鼠肠道免疫的影响[J]. 生态毒理学报, 2022, 17(3): 277-283. doi: 10.7524/AJE.1673-5897.20210915002
引用本文: 贾田江, 陈怡, 张俊波, 李奡, 黄沛力. 聚苯乙烯纳米塑料暴露对小鼠肠道免疫的影响[J]. 生态毒理学报, 2022, 17(3): 277-283. doi: 10.7524/AJE.1673-5897.20210915002
Jia Tianjiang, Chen Yi, Zhang Junbo, Li Ao, Huang Peili. Effects of Polystyrene Nanoplastics on Intestinal Immunity in Mice[J]. Asian journal of ecotoxicology, 2022, 17(3): 277-283. doi: 10.7524/AJE.1673-5897.20210915002
Citation: Jia Tianjiang, Chen Yi, Zhang Junbo, Li Ao, Huang Peili. Effects of Polystyrene Nanoplastics on Intestinal Immunity in Mice[J]. Asian journal of ecotoxicology, 2022, 17(3): 277-283. doi: 10.7524/AJE.1673-5897.20210915002

聚苯乙烯纳米塑料暴露对小鼠肠道免疫的影响

    作者简介: 贾田江(1996—),女,硕士研究生,研究方向为纳米毒理学,E-mail:13934601538@163.com
    通讯作者: 陈怡, E-mail: cherly8611@sina.com 黄沛力, E-mail: huangpl@ccmu.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(82173569)

  • 中图分类号: X171.5

Effects of Polystyrene Nanoplastics on Intestinal Immunity in Mice

    Corresponding authors: Chen Yi, cherly8611@sina.com ;  Huang Peili, huangpl@ccmu.edu.cn
  • Fund Project:
  • 摘要: 纳米塑料(NPs)的生态风险评估和潜在毒性效应研究正在逐步成为全球公共卫生领域关注的热点。本研究探究聚苯乙烯纳米塑料(PS NPs)对小鼠肠道免疫的影响,将40只雌性BALB/c小鼠随机分为4组,每组10只,分别为对照组、0.5 mg·kg-1(以体质量计)染毒组、5 mg·kg-1染毒组和50 mg·kg-1染毒组。采用灌胃的方式进行染毒,连续灌胃PS NPs悬液7 d,对照组小鼠灌胃超纯水。通过观察小鼠生长状况、免疫相关血生化指标、小肠组织形态和结肠黏液分泌情况的变化,探究了PS NPs暴露对小鼠肠道免疫的影响。结果表明,与对照组相比,随着染毒剂量的增加,小鼠体质量增长缓慢,补体C3含量下降(高剂量组,P<0.05),小肠结构受损,结肠黏液分泌减少。提示,PS NPs可能通过损伤肠道免疫屏障进而干扰机体免疫稳态,且其影响作用与PS NPs的含量呈正相关。研究结果将为NPs污染的潜在毒性效应评价提供基础数据。
  • 加载中
  • Gigault J, Halle A T, Baudrimont M, et al. Current opinion:What is a nanoplastic?[J]. Environmental Pollution, 2018, 235:1030-1034
    Hernandez L M, Yousefi N, Tufenkji N. Are there nanoplastics in your personal care products?[J]. Environmental Science & Technology Letters, 2017, 4(7):280-285
    Lambert S, Wagner M. Characterisation of nanoplastics during the degradation of polystyrene[J]. Chemosphere, 2016, 145:265-268
    Hernandez L M, Xu E G, Larsson H C E, et al. Plastic teabags release billions of microparticles and nanoparticles into tea[J]. Environmental Science & Technology, 2019, 53(21):12300-12310
    Thubagere A, Reinhard B M. Nanoparticle-induced apoptosis propagates through hydrogen-peroxide-mediated bystander killing:Insights from a human intestinal epithelium in vitro model[J]. ACS Nano, 2010, 4(7):3611-3622
    Paget V, Dekali S, Kortulewski T, et al. Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages[J]. PLoS One, 2015, 10(4):e0123297
    Veneman W J, Spaink H P, Brun N R, et al. Pathway analysis of systemic transcriptome responses to injected polystyrene particles in zebrafish larvae[J]. Aquatic Toxicology, 2017, 190:112-120
    Marques-Santos L F, Grassi G, Bergami E, et al. Cationic polystyrene nanoparticle and the sea urchin immune system:Biocorona formation, cell toxicity, and multixenobiotic resistance phenotype[J]. Nanotoxicology, 2018, 12(8):847-867
    Yang H, Xiong H R, Mi K H, et al. Toxicity comparison of nano-sized and micron-sized microplastics to goldfish Carassius auratus larvae[J]. Journal of Hazardous Materials, 2020, 388:122058
    Lu Y F, Zhang Y, Deng Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental Science & Technology, 2016, 50(7):4054-4060
    Deng Y, Zhang Y, Lemos B, et al. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure[J]. Scientific Reports, 2017, 7:46687
    Stock V, Böhmert L, Lisicki E, et al. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo[J]. Archives of Toxicology, 2019, 93(7):1817-1833
    Park E J, Han J S, Park E J, et al. Repeated-oral dose toxicity of polyethylene microplastics and the possible implications on reproduction and development of the next generation[J]. Toxicology Letters, 2020, 324:75-85
    Xia X H, Sun M H, Zhou M, et al. Polyvinyl chloride microplastics induce growth inhibition and oxidative stress in Cyprinus carpio var. larvae[J]. The Science of the Total Environment, 2020, 716:136479
    Lithner D, Larsson A, Dave G. Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition[J]. The Science of the Total Environment, 2011, 409(18):3309-3324
    Moore C J. Synthetic polymers in the marine environment:A rapidly increasing, long-term threat[J]. Environmental Research, 2008, 108(2):131-139
    Gigault J, Pedrono B, Maxit B, et al. Marine plastic litter:The unanalyzed nano-fraction[J]. Environmental Science:Nano, 2016, 3(2):346-350
    Wagner S, Reemtsma T. Things we know and don't know about nanoplastic in the environment[J]. Nature Nanotechnology, 2019, 14(4):300-301
    K ögel T, Bjorøy Ø, Toto B, et al. Micro- and nanoplastic toxicity on aquatic life:Determining factors[J]. The Science of the Total Environment, 2020, 709:136050
    杨婧婧, 徐笠, 陆安祥, 等. 环境中微(纳米)塑料的来源及毒理学研究进展[J]. 环境化学, 2018, 37(3):383-396

    Yang J J, Xu L, Lu A X, et al. Research progress on the sources and toxicology of micro (nano) plastics in environment[J]. Environmental Chemistry, 2018, 37(3):383-396(in Chinese)

    杨涛, 杨大平, 钱友存. 肠道菌群对机体免疫反应的调节和影响[J]. 中华炎性肠病杂志(中英文), 2019, 3(3):198-202
    杨文娟, 来利华, 王青青. 肠道杯状细胞在肠道免疫调控中作用的研究进展[J]. 细胞与分子免疫学杂志, 2018, 34(11):1046-1050

    Yang W J, Lai L H, Wang Q Q. Progress in the role of intestinal goblet cells in intestinal immune regulation[J]. Chinese Journal of Cellular and Molecular Immunology, 2018, 34(11):1046-1050(in Chinese)

    Linden S K, Sutton P, Karlsson N G, et al. Mucins in the mucosal barrier to infection[J]. Mucosal Immunology, 2008, 1(3):183-197
    Elizalde-Velázquez A, Crago J, Zhao X F, et al. In vivo effects on the immune function of fathead minnow (Pimephales promelas) following ingestion and intraperitoneal injection of polystyrene nanoplastics[J]. The Science of the Total Environment, 2020, 735:139461
    Pedà C, Caccamo L, Fossi M C, et al. Intestinal alterations in European Sea bass Dicentrarchus labrax (Linnaeus, 1758) exposed to microplastics:Preliminary results[J]. Environmental Pollution, 2016, 212:251-256
  • 加载中
计量
  • 文章访问数:  2623
  • HTML全文浏览数:  2623
  • PDF下载数:  101
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-09-15
贾田江, 陈怡, 张俊波, 李奡, 黄沛力. 聚苯乙烯纳米塑料暴露对小鼠肠道免疫的影响[J]. 生态毒理学报, 2022, 17(3): 277-283. doi: 10.7524/AJE.1673-5897.20210915002
引用本文: 贾田江, 陈怡, 张俊波, 李奡, 黄沛力. 聚苯乙烯纳米塑料暴露对小鼠肠道免疫的影响[J]. 生态毒理学报, 2022, 17(3): 277-283. doi: 10.7524/AJE.1673-5897.20210915002
Jia Tianjiang, Chen Yi, Zhang Junbo, Li Ao, Huang Peili. Effects of Polystyrene Nanoplastics on Intestinal Immunity in Mice[J]. Asian journal of ecotoxicology, 2022, 17(3): 277-283. doi: 10.7524/AJE.1673-5897.20210915002
Citation: Jia Tianjiang, Chen Yi, Zhang Junbo, Li Ao, Huang Peili. Effects of Polystyrene Nanoplastics on Intestinal Immunity in Mice[J]. Asian journal of ecotoxicology, 2022, 17(3): 277-283. doi: 10.7524/AJE.1673-5897.20210915002

聚苯乙烯纳米塑料暴露对小鼠肠道免疫的影响

    通讯作者: 陈怡, E-mail: cherly8611@sina.com ;  黄沛力, E-mail: huangpl@ccmu.edu.cn
    作者简介: 贾田江(1996—),女,硕士研究生,研究方向为纳米毒理学,E-mail:13934601538@163.com
  • 1. 首都医科大学公共卫生学院, 北京 100069;
  • 2. 环境毒理学北京市重点实验室, 北京 100069;
  • 3. 首都医科大学基础医学实验教学中心医学机能学教学实验室, 北京 100069
基金项目:

国家自然科学基金面上项目(82173569)

摘要: 纳米塑料(NPs)的生态风险评估和潜在毒性效应研究正在逐步成为全球公共卫生领域关注的热点。本研究探究聚苯乙烯纳米塑料(PS NPs)对小鼠肠道免疫的影响,将40只雌性BALB/c小鼠随机分为4组,每组10只,分别为对照组、0.5 mg·kg-1(以体质量计)染毒组、5 mg·kg-1染毒组和50 mg·kg-1染毒组。采用灌胃的方式进行染毒,连续灌胃PS NPs悬液7 d,对照组小鼠灌胃超纯水。通过观察小鼠生长状况、免疫相关血生化指标、小肠组织形态和结肠黏液分泌情况的变化,探究了PS NPs暴露对小鼠肠道免疫的影响。结果表明,与对照组相比,随着染毒剂量的增加,小鼠体质量增长缓慢,补体C3含量下降(高剂量组,P<0.05),小肠结构受损,结肠黏液分泌减少。提示,PS NPs可能通过损伤肠道免疫屏障进而干扰机体免疫稳态,且其影响作用与PS NPs的含量呈正相关。研究结果将为NPs污染的潜在毒性效应评价提供基础数据。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回