常见除草剂对硬骨鱼类和双壳贝类生殖能力及早期发育的影响研究进展
Advances on Effects of Common Herbicides on Reproductive Capacity and Early Development in Teleosts and Bivalves
-
摘要: 不同种类的除草剂可通过雨水冲刷、地表径流和渗入地下水等方式汇入海洋,影响鱼类和双壳贝类的生长、发育和繁殖。本文总结了近20年几类常见除草剂对硬骨鱼类和双壳贝类水生生物生殖能力及早期发育影响的研究进展。除草剂可通过诱导氧化应激、干扰精卵识别和生殖内分泌等机制造成鱼类和双壳贝类生殖毒性;也可通过氧化损伤、神经毒性和导致遗传物质损伤等影响鱼类胚胎、仔鱼及双壳贝类幼虫的早期发育。另外,环境中其他污染因素或环境因子可能会导致除草剂的生殖和发育毒性增加。Abstract: Various herbicide residues enter the ocean through rainoff, surface or underground runoff, and pose a threat on the growth, development and reproduction of fish and bivalves. This paper summarized the advances in research on the effects of several common herbicides on the reproductive capacity and early development of teleosts and bivalves in recent 20 years. Herbicides could cause reproductive toxicity in fish and bivalves via inducing oxidative stress, disturbing sperm and egg identification, disrupting reproductive endocrine system, and so on. They could also cause oxidative damage, neurotoxicity, and genetic toxicity, and thereby affected the early development of fish embryos, larvae and bivalves larvae. In addition, co-exposure with other pollutants or environmental factors would probably increase the reproductive and developmental toxicity of herbicides.
-
Key words:
- herbicide /
- bivalves /
- teleostean /
- reproductive ability /
- early development
-
-
张梦雪, 赵义良, 李云, 等. 浅谈除草剂类型、危害及防治补救方法[J]. 农业开发与装备, 2020(11):106-107 滕春红. 氯嘧磺隆对土壤微生态的影响及其高效降解真菌的研究[D]. 哈尔滨:东北农业大学, 2006:2-3 Teng C H. Effects of chlorimuron-ethyl on the soil microecosystem and research of chlorimuron-ethyl degrading fungi[D]. Harbin:Northeast Agricultural University, 2006:2 -3(in Chinese)
李松宇. 助剂对除草剂增效作用的研究[D]. 哈尔滨:东北农业大学, 2020:2-3 Li S Y. Study on synergistic effect of adjuvant on herbicide[D]. Harbin:Northeast Agricultural University, 2020:2 -3(in Chinese)
徐英江, 刘慧慧, 任传博, 等. 莱州湾海域表层海水中三嗪类除草剂的分布特征[J]. 渔业科学进展, 2014, 35(3):34-39 Xu Y J, Liu H H, Ren C B, et al. Distributions of the triazine herbicides in the surface seawater of Laizhou Bay[J]. Progress in Fishery Sciences, 2014, 35(3):34-39(in Chinese)
Wang Z H, Ouyang W, Tysklind M, et al. Seasonal variations in atrazine degradation in a typical semienclosed bay of the northwest Pacific Ocean[J]. Environmental Pollution, 2021, 283:117072 何书海, 曹小聪, 吴海军, 等. 直接进样超高效液相色谱-三重四极杆质谱法快速测定环境水样中草甘膦、氨甲基膦酸、草铵膦及乙烯利残留[J]. 色谱, 2019, 37(11):1179-1184 He S H, Cao X C, Wu H J, et al. Rapid determination of glyphosate, aminomethyl phosphonic acid, glufosinate, and ethephon residues in environmental water by direct injection-ultra performance liquid chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Chromatography, 2019, 37(11):1179-1184(in Chinese)
Thi Hue N, Nguyen T P M, Nam H, et al. Paraquat in surface water of some streams in Mai chau Province, the northern Vietnam:Concentrations, profiles, and human risk assessments[J]. Journal of Chemistry, 2018, 2018:8521012 中华人民共和国国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准[S]. 北京:中华人民共和国国家环境保护总局, 国家质量监督检验检疫总局, 2002 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准[S]. 北京:中华人民共和国卫生部, 中国国家标准化管理委员会, 2006 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 地下水质量标准[S]. 北京:中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会, 2017 中华人民共和国国家环境保护局. 海水水质标准[S]. 北京:中华人民共和国国家环境保护局, 1997 刘爱菊, 朱鲁生, 王军, 等. 除草剂阿特拉津的环境毒理研究进展[J]. 土壤与环境, 2002, 11(4):405-408 Liu A J, Zhu L S, Wang J, et al. Progress of study on the environmental toxicology of the herbicide atrazine[J]. Soil and Environmental Sciences, 2002, 11(4):405-408(in Chinese)
付晓苹, 刘巧荣, 许玉艳, 等. 扑草净对人体健康及水生环境的安全性评价[J]. 中国农学通报, 2015, 31(35):49-57 Fu X P, Liu Q R, Xu Y Y, et al. Safety assessment of prometryn on human health and aquatic environment[J]. Chinese Agricultural Science Bulletin, 2015, 31(35):49-57(in Chinese)
魏杰, 陈蓓蓓, 王波娜, 等. 6种除草剂对七星瓢虫的急性毒性与风险评价[J]. 生物化工, 2020, 6(5):25-28 Wei J, Chen B B, Wang B N, et al. The acute toxicity and risk assessment of six herbicides to Coccinella septempunctata[J]. Biological Chemical Engineering, 2020, 6(5):25-28(in Chinese)
刘颖. 环境雌激素17β-E2对栉孔扇贝内分泌干扰的作用机制[D]. 大连:大连海洋大学, 2014:3-4 Liu Y. Mechanisms for endocrine disrupting effects of environmental estrogens:17β-E2 Behrens D, Rouxel J, Burgeot T, et al. Comparative embryotoxicity and genotoxicity of the herbicide diuron and its metabolites in early life stages of Crassostrea gigas:Implication of reactive oxygen species production[J]. Aquatic Toxicology, 2016, 175:249-259 乔丹. 山东沿海贝类中除草剂污染特征及风险评价[D]. 上海:上海海洋大学, 2017:23-34 Qiao D. Characteristics and risk assessment of herbicides residue in coastal shellfish in Shandong Province[D]. Shanghai:Shanghai Ocean University, 2017:23 -34(in Chinese)
乔丹, 刘小静, 张华威, 等. 山东沿海贝类中除草剂污染特征及风险评价[J]. 中国渔业质量与标准, 2017, 7(3):22-29 Qiao D, Liu X J, Zhang H W, et al. Pollution characteristics and risk assessment of herbicide residues in shellfish from Shandong coastal area[J]. Chinese Fishery Quality and Standards, 2017, 7(3):22-29(in Chinese)
母治平. 多不饱和脂肪酸在雄性反刍动物中的应用研究进展[J]. 中国饲料, 2020(4):5-9 Mu Z P. Advances in the application of polyunsaturated fatty acids in male ruminants[J]. China Feed, 2020 (4):5-9(in Chinese)
Akcha F, Spagnol C, Rouxel J. Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos[J]. Aquatic Toxicology, 2012, 106-107:104-113 张逸帆, 倪沙, 邓双丽, 等. 阿特拉津对动物生长发育影响的研究进展[J]. 中国农学通报, 2008, 24(11):424-427 Zhang Y F, Ni S, Deng S L, et al. Advance in effect of atrazine on growth and development of animals[J]. Chinese Agricultural Science Bulletin, 2008, 24(11):424-427(in Chinese)
Bautista F E A, Varela Junior A S, Corcini C D, et al. The herbicide atrazine affects sperm quality and the expression of antioxidant and spermatogenesis genes in zebrafish testes[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2018, 206-207:17-22 Lopes F M, Varela Junior A S, Corcini C D, et al. Effect of glyphosate on the sperm quality of zebrafish Danio rerio[J]. Aquatic Toxicology, 2014, 155:322-326 伊雄海. 农药类环境激素低剂量暴露对鲫鱼内分泌干扰效应及生物标志物研究[D]. 上海:上海交通大学, 2008:35-58 Yi X H. Endocrine disrupting effects and biomarker research of low dose herbicide environmental hormones[D]. Shanghai:Shanghai Jiao Tong University, 2008:35 -58(in Chinese)
彭中校, 黄会, 王玮云, 等. 异丙甲草胺对四角蛤蜊鳃和肝胰腺抗氧化酶系和组织结构的影响[J]. 中国水产科学, 2022, 29(4):574-584 Peng Z X, Huang H, Wang W Y, et al. Effects of metolachlor on the antioxidant enzyme system and histological structure in the gills and hepatopancreas of Mactra veneriformis[J]. Journal of Fishery Sciences of China, 2022, 29(4):574-584(in Chinese)
Martínez K, Ferrer I, Hernando M D, et al. Occurrence of antifouling biocides in the Spanish Mediterranean marine environment[J]. Environmental Technology, 2001, 22(5):543-552 Harino H, Kitano M, Mori Y, et al. Degradation of antifouling booster biocides in water[J]. Journal of the Marine Biological Association of the United Kingdom, 2005, 85(1):33-38 Ranke J. Persistence of antifouling agents in the marine biosphere[J]. Environmental Science & Technology, 2002, 36(7):1539-1545 Mai H, Morin B, Pardon P, et al. Environmental concentrations of irgarol, diuron and S-metolachlor induce deleterious effects on gametes and embryos of the Pacific oyster, Crassostrea gigas[J]. Marine Environmental Research, 2013, 89:1-8 Juhel G, Bayen S, Goh C, et al. Use of a suite of biomarkers to assess the effects of carbamazepine, bisphenol A, atrazine, and their mixtures on green mussels, Perna viridis[J]. Environmental Toxicology and Chemistry, 2017, 36(2):429-441 石颖, Faisal Islam, 周伟军, 等. 激素类除草剂2,4-D的降解及对作物与环境的影响[J]. 浙江农业科学, 2021, 62(10):2036-2043 Shi Y, Islam F, Zhou W J, et al. Degradation of auxin herbicide 2,4-D and its impact on crops and ecological environment[J]. Journal of Zhejiang Agricultural Sciences, 2021, 62(10):2036-2043(in Chinese)
Ordaz-Guillén Y, Galíndez-Mayer C J, Ruiz-Ordaz N, et al. Evaluating the degradation of the herbicides picloram and 2,4-D in a compartmentalized reactive biobarrier with internal liquid recirculation[J].Environmental Science and Pollution Research, 2014, 21(14):8765-8773 Greco L, Pellerin J, Capri E, et al. Physiological effects of temperature and a herbicide mixture on the soft-shell clam Mya arenaria (Mollusca, Bivalvia)[J]. Environmental Toxicology and Chemistry, 2011, 30(1):132-141 Barranger A, Akcha F, Rouxel J, et al. Study of genetic damage in the Japanese oyster induced by an environmentally-relevant exposure to diuron:Evidence of vertical transmission of DNA damage[J]. Aquatic Toxicology, 2014, 146:93-104 Tian Y Y, Liu M X, Sang Y X, et al. Degradation of prometryn in Ruditapes philippinarum using ozonation:Influencing factors, degradation mechanism, pathway and toxicity assessment[J]. Chemosphere, 2020, 248:126018 于嘉兴, 刘旭东, 韩磊, 等. 敌草隆土壤环境行为研究进展[J]. 世界农药, 2021, 43(12):1-11 Yu J X, Liu X D, Han L, et al. Research progress on environmental behavior of diuron in soils[J]. World Pesticide, 2021, 43(12):1-11(in Chinese)
Pereira T S, Boscolo C N, Silva D G, et al. Anti-androgenic activities of diuron and its metabolites in male Nile tilapia (Oreochromis niloticus)[J]. Aquatic Toxicology, 2015, 164:10-15 Johnsen T N Jr, Morton H L. Tebuthiuron persistence and distribution in some semiarid soils[J]. Journal of Environmental Quality, 1989, 18(4):433-438 Dam R A, Camilleri C, Bayliss P, et al. Ecological risk assessment of tebuthiuron following application on tropical Australian wetlands[J]. Human and Ecological Risk Assessment:An International Journal, 2004, 10(6):1069-1097 de Almeida M D, Pereira T S B, Batlouni S R, et al. Estrogenic and anti-androgenic effects of the herbicide tebuthiuron in male Nile tilapia (Oreochromis niloticus)[J]. Aquatic Toxicology, 2018, 194:86-93 Cleary J A, Tillitt D E, Vom Saal F S, et al. Atrazine induced transgenerational reproductive effects in medaka (Oryzias latipes)[J]. Environmental Pollution, 2019, 251:639-650 Armiliato N, Ammar D, Nezzi L, et al. Changes in ultrastructure and expression of steroidogenic factor-1 in ovaries of zebrafish Danio rerio exposed to glyphosate[J]. Journal of Toxicology and Environmental Health Part A, 2014, 77(7):405-414 Hu Y, Li D, Ma X, et al. Effects of 2,4-dichlorophenol exposure on zebrafish:Implications for the sex hormone synthesis[J]. Aquatic Toxicology, 2021, 236:105868 杨梅. 乙草胺对斑马鱼的发育和生殖内分泌干扰机制研究[D]. 杭州:浙江大学, 2015:75-91 Yang M. The developmental and reproductive endocrine interference mechanism of acetochlor on zebrafish (Danio rerio)[D]. Hangzhou:Zhejiang University, 2015:75 -91(in Chinese)
Thomas P, Sweatman J. Interference by atrazine and bisphenol-A with progestin binding to the ovarian progestin membrane receptor and induction of oocyte maturation in Atlantic croaker[J]. Marine Environmental Research, 2008, 66(1):1-2 Naimi A, Martinez A S, Specq M L, et al. Identification and expression of a factor of the DM family in the oyster Crassostrea gigas[J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 152(2):189-196 Huvet A, Béguel J P, Cavaleiro N P, et al. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas[J]. The Journal of Experimental Biology, 2015, 218(Pt 11):1740-1747 Rodrigues-Silva C, Flores-Nunes F, Vernal J I, et al. Expression and immunohistochemical localization of the cytochrome P450 isoform 356A1(CYP356A1) in oyster Crassostrea gigas[J]. Aquatic Toxicology, 2015, 159:267-275 许开航, 王梅芳, 余祥勇, 等. 企鹅珍珠贝Sox9基因的克隆及表达分析[J]. 广东海洋大学学报, 2018, 38(2):15-22 Xu K H, Wang M F, Yu X Y, et al. Molecular cloning and expression analysis of Sox9 gene from Pteria penguin[J]. Journal of Guangdong Ocean University, 2018, 38(2):15-22(in Chinese)
周丽青, 赵丹, 吴宙, 等. 主要经济双壳贝类性别分化的分子机制概述[J]. 渔业科学进展, 2020, 41(5):194-202 Zhou L Q, Zhao D, Wu Z, et al. Review:Molecular mechanism of sex differentiation in major economic bivalves[J]. Progress in Fishery Sciences, 2020, 41(5):194-202(in Chinese)
周祖阳, 李琪, 于红, 等. 长牡蛎Fem-1基因cDNA克隆和表达分析[J]. 中国海洋大学学报(自然科学版), 2018, 48(6):45-54 Zhou Z Y, Li Q, Yu H, et al. Cloning and expression analysis of fem-1 gene of Pacific oyster(Crassostrea gigas)[J]. Periodical of Ocean University of China, 2018, 48(6):45-54(in Chinese) Xu F, Kong L, Zhang Y, et al. Complete genome sequencing and functional analysis of oyster[J]. Science & Technology Information, 2016:162-163 Santerre C, Sourdaine P, Adeline B, et al. Cg-SoxE and Cg-β-catenin, two new potential actors of the sex-determining pathway in a hermaphrodite lophotrochozoan, the Pacific oyster Crassostrea gigas[J]. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2014, 167:68-76 Corporeau C, Groisillier A, Jeudy A, et al. A functional study of transforming growth factor-beta from the gonad of Pacific oyster Crassostrea gigas[J]. Marine Biotechnology, 2011, 13(5):971-980 Croll R P, Wang C D. Possible roles of sex steroids in the control of reproduction in bivalve molluscs[J]. Aquaculture, 2007, 272(1-4):76-86 Janer G, Porte C. Sex steroids and potential mechanisms of non-genomic endocrine disruption in invertebrates[J]. Ecotoxicology, 2007, 16(1):145-160 Fernandes D, Loi B, Porte C. Biosynthesis and metabolism of steroids in molluscs[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2011, 127(3-5):189-195 Bridgham J T, Keay J, Ortlund E A, et al. Vestigialization of an allosteric switch:Genetic and structural mechanisms for the evolution of constitutive activity in a steroid hormone receptor[J]. PLoS Genetics, 2014, 10(1):e1004058 Le Curieux-Belfond O, Fievet B, Séralini G E, et al. Short-term bioaccumulation, circulation and metabolism of estradiol-17β in the oyster Crassostrea gigas[J]. Journal of Experimental Marine Biology and Ecology, 2005, 325(2):125-133 Liu P P, Miao J J, Song Y, et al. Effects of 2,2',4,4'-tetrabromodipheny ether (BDE-47) on gonadogenesis of the Manila clam Ruditapes philippinarum[J]. Aquatic Toxicology, 2017, 193:178-186 Yang Y Y, Zhou Y Y, Pan L Q, et al. Benzo[a] pyrene exposure induced reproductive endocrine-disrupting effects via the steroidogenic pathway and estrogen signaling pathway in female scallop Chlamys farreri[J]. The Science of the Total Environment, 2020, 726:138585 Zhang Y Y, Wang Q, Ji Y L, et al. Identification and mRNA expression of two 17β -hydroxysteroid dehydrogenase genes in the marine mussel Mytilus galloprovincialis following exposure to endocrine disrupting chemicals[J]. Environmental Toxicology and Pharmacology, 2014, 37(3):1243-1255 Cuvillier-Hot V, Lenoir A. Invertebrates facing environmental contamination by endocrine disruptors:Novel evidences and recent insights[J]. Molecular and Cellular Endocrinology, 2020, 504:110712 Flynn K, Wedin M B, Bonventre J A, et al. Burrowing in the freshwater mussel Elliptio complanata is sexually dimorphic and feminized by low levels of atrazine[J]. Journal of Toxicology and Environmental Health Part A, 2013, 76(20):1168-1181 Iori S, Rovere G D, Ezzat L, et al. The effects of glyphosate and AMPA on the Mediterranean mussel Mytilus galloprovincialis and its microbiota[J]. Environmental Research, 2020, 182:108984 Liu S H, Deng X L, Bai L Y. Developmental toxicity and transcriptome analysis of zebrafish (Danio rerio) embryos following exposure to chiral herbicide safener benoxacor[J]. The Science of the Total Environment, 2021, 761:143273 Adeyemi J A, da Cunha Martins-A Jr, Barbosa F Jr. Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (Danio rerio) co-exposed to arsenic and atrazine[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2015, 172-173:7-12 Wiegand C, Pflugmacher S, Giese M, et al. Uptake, toxicity, and effects on detoxication enzymes of atrazine and trifluoroacetate in embryos of zebrafish[J]. Ecotoxicology and Environmental Safety, 2000, 45(2):122-131 Sulukan E, Köktürk M, Ceylan H, et al. An approach to clarify the effect mechanism of glyphosate on body malformations during embryonic development of zebrafish (Daino rerio)[J]. Chemosphere, 2017, 180:77-85 桂英爱, 葛祥武, 孙程鹏, 等. 扑草净在环境和生物体内的降解代谢、毒性及安全性评价研究进展[J]. 大连海洋大学学报, 2019, 34(6):846-852 Gui Y G, Ge X W, Sun C P, et al. Research progress:Degradation, metabolism, toxicity and safety evaluation of prometryne in environment and organisms[J]. Journal of Dalian Ocean University, 2019, 34(6):846-852(in Chinese)
Velisek J, Lidová J, Stara A, et al. Effects of prometryne on early life stages of common carp[J]. Toxicology Letters, 2014, 229:S117 Díaz-Martín R D, Valencia-Hernández J D, Betancourt-Lozano M, et al. Changes in microtubule stability in zebrafish (Danio rerio) embryos after glyphosate exposure[J]. Heliyon, 2021, 7(1):e06027 Martins R X, Vieira L, Souza J A C R, et al. Exposure to 2,4-D herbicide induces hepatotoxicity in zebrafish larvae[J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology:CBP, 2021, 248:109110 Arufe M I, Arellano J, Moreno M J, et al. Comparative toxic effects of formulated simazine on Vibrio fischeri and gilthead seabream (Sparus aurata L.) larvae[J]. Chemosphere, 2004, 57(11):1725-1732 Velisek J, Stara A, Machova J, et al. Effect of terbutryn at environmental concentrations on early life stages of common carp (Cyprinus carpio L.)[J]. Pesticide Biochemistry and Physiology, 2012, 102(1):102-108 鲜亚斌, 杨梅. 急性敌草快中毒研究及治疗现状[J]. 中外医疗, 2021, 40(27):195-198 Xian Y B, Yang M. Research and treatment status of acute diquat poisoning[J]. China & Foreign Medical Treatment, 2021, 40(27):195-198(in Chinese)
McCuaig L M, Martyniuk C J, Marlatt V L. Morphometric and proteomic responses of early-life stage rainbow trout (Oncorhynchus mykiss) to the aquatic herbicide diquat dibromide[J]. Aquatic Toxicology, 2020, 222:105446 Forner-Piquer I, Faucherre A, Byram J, et al. Differential impact of dose-range glyphosate on locomotor behavior, neuronal activity, glio-cerebrovascular structures, and transcript regulations in zebrafish larvae[J]. Chemosphere, 2021, 267:128986 常菊花. 丁草胺对斑马鱼的内分泌干扰效应研究[D]. 南京:南京农业大学, 2012:33-66 Chang J H. Endocrine disruping effects of butachlor on zebrafish (Danio rerio)[D]. Nanjing:Nanjing Agricultural University, 2012:33 -66(in Chinese)
His E, Beiras R, Seaman M N L. The assessment of marine pollution-bioassays with bivalve embryos and larvae[J]. Advances in Marine Biology, 1999, 37:1-178 Séguin A, Mottier A, Perron C, et al. Sub-lethal effects of a glyphosate-based commercial formulation and adjuvants on juvenile oysters (Crassostrea gigas) exposed for 35 days[J]. Marine Pollution Bulletin, 2017, 117(1-2):348-358 Mottier A, Kientz-Bouchart V, Serpentini A, et al. Effects of glyphosate-based herbicides on embryo-larval development and metamorphosis in the Pacific oyster, Crassostrea gigas[J]. Aquatic Toxicology, 2013, 128-129:67-78 Bringer A, Thomas H, Prunier G, et al. Toxicity and risk assessment of six widely used pesticides on embryo-larval development of the Pacific oyster, Crassostrea gigas[J]. The Science of the Total Environment, 2021, 779:146343 宋浩. 脉红螺幼虫变态过程多组学解析及关键基因的调控作用[D]. 北京:中国科学院大学, 2018:1-12 Song H. Understanding the metamorphosis in veined Rapa whelk Rapana venosa from omics insight and the regulation role of key genes on its metamorphosis[D]. Beijing:University of Chinese Academy of Sciences, 2018:1 -12(in Chinese)
张立敏, 顾超, 安红梅. 氧化应激介导的细胞凋亡在阿尔茨海默病中的作用[J]. 医学综述, 2021, 27(9):1685-1690 Zhang L M, Gu C, An H M. Role of oxidative stress-mediated apoptosis in Alzheimer's disease[J]. Medical Recapitulate, 2021, 27(9):1685-1690(in Chinese)
Bouilly K, McCombie H, Leitão A, et al. Persistence of atrazine impact on aneuploidy in Pacific oysters, Crassostrea gigas[J].Marine Biology, 2004, 145(4):699-705 Gamain P, Gonzalez P, Cachot J, et al. Combined effects of temperature and copper and S-metolachlor on embryo-larval development of the Pacific oyster, Crassostrea gigas[J]. Marine Pollution Bulletin, 2017, 115(1-2):201-210 Schweizer M, Brilisauer K, Triebskorn R, et al. How glyphosate and its associated acidity affect early development in zebrafish (Danio rerio)[J]. PeerJ, 2019, 7:e7094 Gamain P, Gonzalez P, Cachot J, et al. Combined effects of pollutants and salinity on embryo-larval development of the Pacific oyster, Crassostrea gigas[J]. Marine Environmental Research, 2016, 113:31-38 Xie J Q, Zhao L, Liu K, et al. Enantioselective effects of chiral amide herbicides napropamide, acetochlor and propisochlor:The more efficient R-enantiomer and its environmental friendly[J]. The Science of the Total Environment, 2018, 626:860-866 Xu C, Sun X H, Niu L L, et al. Enantioselective thyroid disruption in zebrafish embryo-larvae via exposure to environmental concentrations of the chloroacetamide herbicide acetochlor[J]. The Science of the Total Environment, 2019, 653:1140-1148 -

计量
- 文章访问数: 2044
- HTML全文浏览数: 2044
- PDF下载数: 46
- 施引文献: 0