环境-生物系统中HBCDs非对映异构体的迁移转化规律

宋淑玲, 马晓东. 环境-生物系统中HBCDs非对映异构体的迁移转化规律[J]. 生态毒理学报, 2022, 17(5): 165-174. doi: 10.7524/AJE.1673-5897.20211023001
引用本文: 宋淑玲, 马晓东. 环境-生物系统中HBCDs非对映异构体的迁移转化规律[J]. 生态毒理学报, 2022, 17(5): 165-174. doi: 10.7524/AJE.1673-5897.20211023001
Song Shuling, Ma Xiaodong. Migration and Transformation Rules of HBCDs Diastereomers in Environment-biological Systems[J]. Asian journal of ecotoxicology, 2022, 17(5): 165-174. doi: 10.7524/AJE.1673-5897.20211023001
Citation: Song Shuling, Ma Xiaodong. Migration and Transformation Rules of HBCDs Diastereomers in Environment-biological Systems[J]. Asian journal of ecotoxicology, 2022, 17(5): 165-174. doi: 10.7524/AJE.1673-5897.20211023001

环境-生物系统中HBCDs非对映异构体的迁移转化规律

    作者简介: 宋淑玲(1978-),女,博士,研究方向为生态地球化学,E-mail:songshuling163@163.com
    通讯作者: 马晓东, E-mail: dongxma@cau.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(41473008);国家地质实验测试中心基本科研业务费项目(CSJ201906)

  • 中图分类号: X171.5

Migration and Transformation Rules of HBCDs Diastereomers in Environment-biological Systems

    Corresponding author: Ma Xiaodong, dongxma@cau.edu.cn
  • Fund Project:
  • 摘要: 研究表明,环境中六溴环十二烷(hexabromocyclododecanes,HBCDs)无处不在,HBCDs的3种主要非对映异构体(α-HBCD、β-HBCD和γ-HBCD)都能不同程度向环境中的生物体迁移,对生物体产生毒害作用。本文选择土壤-生物和水-生物2个典型系统,从室内模拟和开放环境2种研究方式为切入点,追踪了近20年来,HBCDs非对映异构体的迁移转化的相关研究及进展。这些研究结果包括:(1)在模拟环境-生物系统实验中,环境中HBCDs的3种非对映异构体都发生向生物体迁移和富集现象。对于植物主要通过根茎吸收、迁移和富集,并主要通过作用细胞色素酶对植物产生抑制生长等毒性;(2)相同的水-生物模拟系统中,3种非对映异构体初始暴露浓度的差异,会造成不同的异构体选择性富集现象;(3)在开放的环境-生物系统中,HBCDs在环境和生物体中优势非对映异构体不尽相同,但土壤(沉积物)和水中的优势异构体分别以γ-HBCD和α-HBCD为主;(4)生物对环境中的HBCDs富集作用存在差异性,而HBCDs在生物体内存在异构体转化及手性对映体选择现象。鉴于环境-生物系统中HBCDs异构体转化和选择性富集等机理尚不清楚,我们认为未来需要深入开展以下研究。第一,摸清不同环境中,影响生物体中HBCDs迁移转化的主要因素,并揭示机理;第二,生物体生命周期内,优势异构体的演变及其对生物体毒性的影响;第三,加快开展复杂的水-土-生物三相系统中,HBCDs非对映异构体分布特征及富集特性研究;特别是HBCDs在各相中的迁移规律、分布特征及差异性。第四,开展生物体内HBCDs的3种非对映异构体转化和手性对映选择性机理研究。
  • 加载中
  • Zhang Y Q, Lu Y L, Wang P, et al. Transport of hexabromocyclododecane (HBCD) into the soil, water and sediment from a large producer in China[J]. Science of the Total Environment, 2018, 610-611:94-100
    Huang L, Wang W W, Shah S B, et al. The HBCDs biodegradation using a Pseudomonas strain and its application in soil phytoremediation[J]. Journal of Hazardous Materials, 2019, 380:120833
    Cao X H, Lu Y L, Zhang Y Q, et al. An overview of hexabromocyclododecane (HBCDs) in environmental media with focus on their potential risk and management in China[J]. Environmental Pollution, 2018, 236:283-295
    Shi Z X, Zhang L, Li J G, et al. Legacy and emerging brominated flame retardants in China:A review on food and human milk contamination, human dietary exposure and risk assessment[J]. Chemosphere, 2018, 198:522-536
    Ruan Y F, Zhang K, Wu C X, et al. A preliminary screening of HBCD enantiomers transported by microplastics in wastewater treatment plants[J]. Science of the Total Environment, 2019, 674:171-178
    Yu Z Q, Chen L G, Mai B X, et al. Diastereoisomer- and enantiomer-specific profiles of hexabromocyclododecane in the atmosphere of an urban city in South China[J]. Environmental Science & Technology, 2008, 42(11):3996-4001
    Zhang X L, Yang F X, Xu C, et al. Cytotoxicity evaluation of three pairs of hexabromocyclododecane (HBCD) enantiomers on Hep G2 cell[J]. Toxicology in Vitro:An International Journal Published in Association with BIBRA, 2008, 22(6):1520-1527
    Eriksson P, Fischer C, Wallin M, et al. Impaired behaviour, learning and memory, in adult mice neonatally exposed to hexabromocyclododecane (HBCDD)[J]. Environmental Toxicology and Pharmacology, 2006, 21(3):317-322
    Yamada-Okabe T, Sakai H, Kashima Y, et al. Modulation at a cellular level of the thyroid hormone receptor-mediated gene expression by 1,2,5,6,9,10-hexabromocyclododecane (HBCD), 4, 4'-diiodobiphenyl (DIB), and nitrofen (NIP)[J]. Toxicology Letters, 2005, 155(1):127-133
    Chen H B, Guo S, Li H, et al. Multi-generational effects and variations of stress response by hexabromocyclododecane (HBCD) exposure in the nematode Caenorhabditis elegans[J]. Journal of Environmental Management, 2019, 245:216-222
    Xie X N, Yu C X, Ren Q D, et al. Exposure to HBCD promotes adipogenesis both in vitro and in vivo by interfering with Wnt6 expression[J]. The Science of the Total Environment, 2020, 705:135917
    Shi Z X, Zhang L, Zhao Y F, et al. A national survey of tetrabromobisphenol-A, hexabromocyclododecane and decabrominated diphenyl ether in human milk from China:Occurrence and exposure assessment[J]. The Science of the Total Environment, 2017, 599-600:237-245
    Li F, Jin J, Tan D Q, et al. Hexabromocyclododecane and tetrabromobisphenol A in sediments and paddy soils from Liaohe River Basin, China:Levels, distribution and mass inventory[J]. Journal of Environmental Sciences, 2016, 48:209-217
    Remberger M, Sternbeck J, Palm A, et al. The environmental occurrence of hexabromocyclododecane in Sweden[J]. Chemosphere, 2004, 54(1):9-21
    Li Y N, Zhou Q X, Wang Y Y, et al. Fate of tetrabromobisphenol A and hexabromocyclododecane brominated flame retardants in soil and uptake by plants[J]. Chemosphere, 2011, 82(2):204-209
    程鑫. 六溴环十二烷异构体在鱼体内的污染分布特征及其选择性代谢规律研究[D]. 舟山:浙江海洋大学, 2018:28-41 Cheng X. Distribution characteristics and selective metabolism of hexabromocyclododecane isomers in fish[D]. Zhoushan:Zhejiang Ocean University, 2018:28

    -41(in Chinese)

    Gu S Y, Ekpeghere K I, Kim H Y, et al. Brominated flame retardants in marine environment focused on aquaculture area:Occurrence, source and bioaccumulation[J]. The Science of the Total Environment, 2017, 601-602:1182-1191
    Huang H L, Zhang S Z, Lv J T, et al. Experimental and theoretical evidence for diastereomer- and enantiomer-specific accumulation and biotransformation of HBCD in maize roots[J]. Environmental Science & Technology, 2016, 50(22):12205-12213
    Zhu H K, Sun H W, Zhang Y W, et al. Uptake pathway, translocation, and isomerization of hexabromocyclododecane diastereoisomers by wheat in closed chambers[J]. Environmental Science & Technology, 2016, 50(5):2652-2659
    Zhu H K, Zhang K, Sun H W, et al. Spatial and temporal distributions of hexabromocyclododecanes in the vicinity of an expanded polystyrene material manufacturing plant in Tianjin, China[J]. Environmental Pollution, 2017, 222:338-347
    Zhu H K, Sun H W, Yao Y M, et al. Fate and adverse effects of hexabromocyclododecane diastereoisomers (HBCDDs) in a soil-ryegrass pot system[J]. Chemosphere, 2017, 184:452-459
    Wu T, Wang S, Huang H L, et al. Diastereomer-specific uptake, translocation, and toxicity of hexabromocyclododecane diastereoisomers to maize[J]. Journal of Agricultural and Food Chemistry, 2012, 60(34):8528-8534
    Lv H X, Ma X J, Huang X J, et al. Distribution, diastereomer-specific accumulation and associated health risks of hexabromocyclododecanes (HBCDs) in soil-vegetable system of the Pearl River Delta region, South China[J]. Journal of Environmental Management, 2019, 248:109321
    Du M M, Lin L F, Yan C Z, et al. Diastereoisomer- and enantiomer-specific accumulation, depuration, and bioisomerization of hexabromocyclododecanes in zebrafish (Danio rerio)[J]. Environmental Science & Technology, 2012, 46(20):11040-11046
    Law K, Palace V P, Halldorson T, et al. Dietary accumulation of hexabromocyclododecane diastereoisomers in juvenile rainbow trout (Oncorhynchus mykiss) Ⅰ:Bioaccumulation parameters and evidence of bioisomerization[J]. Environmental Toxicology and Chemistry, 2006, 25(7):1757
    Li B, Yao T Q, Sun H W, et al. Diastereomer- and enantiomer-specific accumulation, depuration, bioisomerization, and metabolism of hexabromocyclododecanes (HBCDs) in two ecologically different species of earthworms[J]. Science of the Total Environment, 2016, 542:427-434
    Brandon A M, El Abbadi S H, Ibekwe U A, et al. Fate of hexabromocyclododecane (HBCD), A common flame retardant, In polystyrene-degrading mealworms:Elevated HBCD levels in egested polymer but no bioaccumulation[J]. Environmental Science & Technology, 2020, 54(1):364-371
    Yu G, Bu Q W, Cao Z G, et al. Brominated flame retardants (BFRs):A review on environmental contamination in China[J]. Chemosphere, 2016, 150:479-490
    Wu T, Huang H L, Zhang S Z. Accumulation and phytotoxicity of technical hexabromocyclododecane in maize[J]. Journal of Environmental Sciences, 2016, 42:97-104
    Huang H L, Wang D, Wen B, et al. Roles of maize cytochrome P450(CYP) enzymes in stereo-selective metabolism of hexabromocyclododecanes (HBCDs) as evidenced by in vitro degradation, biological response and in silico studies[J]. Science of the Total Environment, 2019, 656:364-372
    Zhang Y W, Sun H W, Liu F, et al. Hexabromocyclododecanes in limnic and marine organisms and terrestrial plants from Tianjin, China:Diastereomer- and enantiomer-specific profiles, biomagnification, and human exposure[J]. Chemosphere, 2013, 93(8):1561-1568
    Jo H, Son M H, Seo S H, et al. Matrix-specific distribution and diastereomeric profiles of hexabromocyclododecane (HBCD) in a multimedia environment:Air, soil, sludge, sediment, and fish[J]. Environmental Pollution, 2017, 226:515-522
    Huang H L, Wang D, Wan W N, et al. Hexabromocyclododecanes in soils and plants from a plastic waste treatment area in North China:Occurrence, diastereomer- and enantiomer-specific profiles, and metabolization[J]. Environmental Science and Pollution Research International, 2017, 24(27):21625-21635
    Steven M, Colin R A, Bart N Z, et al. Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea Estuaries and aquatic food webs[J]. Environmental Science & Technology, 2004, 38(21):5497-5504
    Xian Q M, Ramu K, Isobe T, et al. Levels and body distribution of polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs) in freshwater fishes from the Yangtze River, China[J]. Chemosphere, 2008, 71(2):268-276
    Eljarrat E, de la Cal A, Raldua D, et al. Occurrence and bioavailability of polybrominated diphenyl ethers and hexabromocyclododecane in sediment and fish from the Cinca River, a tributary of the Ebro River (Spain)[J]. Environmental Science & Technology, 2004, 38(9):2603-2608
    Jeong G H, Hwang N R, Hwang E H, et al. Hexabromocyclododecanes in crucian carp and sediment from the major rivers in Korea[J]. The Science of the Total Environment, 2014, 470-471:1471-1478
    Zhang Y Q, Lu Y L, Wang P, et al. Biomagnification of hexabromocyclododecane (HBCD) in a coastal ecosystem near a large producer in China:Human exposure implication through food web transfer[J]. Science of the Total Environment, 2018, 624:1213-1220
    Szabo D T, Diliberto J J, Hakk H, et al. Toxicokinetics of the flame retardant hexabromocyclododecane gamma:Effect of dose, timing, route, repeated exposure, and metabolism[J]. Toxicological Sciences, 2010, 117(2):282-293
  • 加载中
计量
  • 文章访问数:  2209
  • HTML全文浏览数:  2209
  • PDF下载数:  139
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-10-23
宋淑玲, 马晓东. 环境-生物系统中HBCDs非对映异构体的迁移转化规律[J]. 生态毒理学报, 2022, 17(5): 165-174. doi: 10.7524/AJE.1673-5897.20211023001
引用本文: 宋淑玲, 马晓东. 环境-生物系统中HBCDs非对映异构体的迁移转化规律[J]. 生态毒理学报, 2022, 17(5): 165-174. doi: 10.7524/AJE.1673-5897.20211023001
Song Shuling, Ma Xiaodong. Migration and Transformation Rules of HBCDs Diastereomers in Environment-biological Systems[J]. Asian journal of ecotoxicology, 2022, 17(5): 165-174. doi: 10.7524/AJE.1673-5897.20211023001
Citation: Song Shuling, Ma Xiaodong. Migration and Transformation Rules of HBCDs Diastereomers in Environment-biological Systems[J]. Asian journal of ecotoxicology, 2022, 17(5): 165-174. doi: 10.7524/AJE.1673-5897.20211023001

环境-生物系统中HBCDs非对映异构体的迁移转化规律

    通讯作者: 马晓东, E-mail: dongxma@cau.edu.cn
    作者简介: 宋淑玲(1978-),女,博士,研究方向为生态地球化学,E-mail:songshuling163@163.com
  • 1. 国家地质实验测试中心, 北京 100037;
  • 2. 中国农业大学理学院, 北京 100193;
  • 3. 中国地质调查局自然资源综合调查指挥中心, 北京 100055
基金项目:

国家自然科学基金资助项目(41473008);国家地质实验测试中心基本科研业务费项目(CSJ201906)

摘要: 研究表明,环境中六溴环十二烷(hexabromocyclododecanes,HBCDs)无处不在,HBCDs的3种主要非对映异构体(α-HBCD、β-HBCD和γ-HBCD)都能不同程度向环境中的生物体迁移,对生物体产生毒害作用。本文选择土壤-生物和水-生物2个典型系统,从室内模拟和开放环境2种研究方式为切入点,追踪了近20年来,HBCDs非对映异构体的迁移转化的相关研究及进展。这些研究结果包括:(1)在模拟环境-生物系统实验中,环境中HBCDs的3种非对映异构体都发生向生物体迁移和富集现象。对于植物主要通过根茎吸收、迁移和富集,并主要通过作用细胞色素酶对植物产生抑制生长等毒性;(2)相同的水-生物模拟系统中,3种非对映异构体初始暴露浓度的差异,会造成不同的异构体选择性富集现象;(3)在开放的环境-生物系统中,HBCDs在环境和生物体中优势非对映异构体不尽相同,但土壤(沉积物)和水中的优势异构体分别以γ-HBCD和α-HBCD为主;(4)生物对环境中的HBCDs富集作用存在差异性,而HBCDs在生物体内存在异构体转化及手性对映体选择现象。鉴于环境-生物系统中HBCDs异构体转化和选择性富集等机理尚不清楚,我们认为未来需要深入开展以下研究。第一,摸清不同环境中,影响生物体中HBCDs迁移转化的主要因素,并揭示机理;第二,生物体生命周期内,优势异构体的演变及其对生物体毒性的影响;第三,加快开展复杂的水-土-生物三相系统中,HBCDs非对映异构体分布特征及富集特性研究;特别是HBCDs在各相中的迁移规律、分布特征及差异性。第四,开展生物体内HBCDs的3种非对映异构体转化和手性对映选择性机理研究。

English Abstract

参考文献 (39)

返回顶部

目录

/

返回文章
返回