浮萍在PPCPs修复中的应用与机理研究
Research Advances on Application and Mechanisms of Duckweed in Bioremediation of PPCPs
-
摘要: 近年来,药物和个人护理品(pharmaceuticals and personal care products,PPCPs)作为一类新兴环境污染物,在多种环境介质中频繁检出,并对生态系统和人类健康造成潜在风险,日益引起广泛关注。植物修复技术以植物为基础,通过太阳能驱动的生物过程去除污染物,具有能耗低、成本低、环境友好等独特优势,常用于水体污染修复。浮萍作为植物修复中常用模式生物,体型微小、结构简单、无性繁殖速度快,且具有较强的适应能力和较好的污水修复能力。本文针对浮萍在PPCPs环境污染修复中的研究进展和应用现状进行综述,重点总结了浮萍对PPCPs的去除机制,包括生物吸附、生物吸收和生物降解等,并对未来的研究方向提出展望,以期为浮萍在PPCPs修复中的应用提供科学依据。Abstract: As a typical class of emerging contaminants, pharmaceuticals and personal care products (PPCPs) have attracted widespread attention, due to their frequently detection in various environmental matrices, and their potential risks to ecological system and human health. Based on plants, phytoremediation is applied to remove pollutants with biological processes driven by solar-power. Due to its unique advantages of low energy consumption, low cost and environmental friendliness, phytoremediation is commonly used for wastewater bioremediation. As a model organism for phytoremediation, duckweed are the smallest flowering plants with simple structure and easy to accumulate biomass with rapid asexual propagation. Besides, duckweed exhibit strong adaptation to various environments and well performance in wastewater bioremediation. Herein, we reviewed the research advances on the application of duckweed in PPCPs bioremediation, focusing on the bio-adsorption, bio-uptake and biodegradation of PPCPs by duckweed. Then we presented some research challenges and proposed future directions of duckweed research. This systematic review provides scientific basis for the practical application of duckweed in bioremediation of PPCPs in environment.
-
Key words:
- pharmaceuticals and personal care products /
- duckweed /
- bio-adsorption /
- bio-uptake /
- biodegradation
-
-
Boxall A B, Rudd M A, Brooks B W, et al. Pharmaceuticals and personal care products in the environment:What are the big questions?[J]. Environmental Health Perspectives, 2012, 120(9):1221-1229 Liu J L, Wong M H. Pharmaceuticals and personal care products (PPCPs):A review on environmental contamination in China[J]. Environment International, 2013, 59:208-224 Yang Y, Ok Y S, Kim K H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants:A review[J]. The Science of the Total Environment, 2017, 596-597:303-320 Wang H, Xi H, Xu L L, et al. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment:A review[J]. The Science of the Total Environment, 2021, 788:147819 Kurade M B, Ha Y H, Xiong J Q, et al. Phytoremediation as a green biotechnology tool for emerging environmental pollution:A step forward towards sustainable rehabilitation of the environment[J]. Chemical Engineering Journal, 2021, 415:129040 Keerthanan S, Jayasinghe C, Biswas J K, et al. Pharmaceutical and personal care products (PPCPs) in the environment:Plant uptake, translocation, bioaccumulation, and human health risks[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(12):1221-1258 Tasho R P, Cho J Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants:A review[J]. Science of the Total Environment, 2016, 563-564:366-376 Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782 杨晶晶, 赵旭耀, 李高洁, 等. 浮萍的研究及应用[J]. 科学通报, 2021, 66(9):1026-1045 Yang J J, Zhao X Y, Li G J, et al. Research and application in duckweeds:A review[J]. Chinese Science Bulletin, 2021, 66(9):1026-1045(in Chinese)
Ekperusi A O, Sikoki F D, Nwachukwu E O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment:State and future perspective[J]. Chemosphere, 2019, 223:285-309 Zhou H D, Liu X J, Chen X M, et al. Characteristics of removal of waste-water marking pharmaceuticals with typical hydrophytes in the urban rivers[J]. The Science of the Total Environment, 2018, 636:1291-1302 Iatrou E I, Stasinakis A S, Aloupi M. Cultivating duckweed Lemna minor in urine and treated domestic wastewater for simultaneous biomass production and removal of nutrients and antimicrobials[J]. Ecological Engineering, 2015, 84:632-639 Bassuney D, Tawfik A. Baffled duckweed pond system for treatment of agricultural drainage water containing pharmaceuticals[J]. International Journal of Phytoremediation, 2017, 19(8):774-780 Hu H, Li X, Wu S H, et al. Effects of long-term exposure to oxytetracycline on phytoremediation of swine wastewater via duckweed systems[J]. Journal of Hazardous Materials, 2021, 414:125508 Di Baccio D, Pietrini F, Bertolotto P, et al. Response of Lemna gibba L. to high and environmentally relevant concentrations of ibuprofen:Removal, metabolism and morpho-physiological traits for biomonitoring of emerging contaminants[J]. Science of the Total Environment, 2017, 584-585:363-373 Matamoros V, Nguyen L X, Arias C A, et al. Evaluation of aquatic plants for removing polar microcontaminants:A microcosm experiment[J]. Chemosphere, 2012, 88(10):1257-1264 Grenni P, Patrolecco L, Rauseo J, et al. Sulfamethoxazole persistence in a river water ecosystem and its effects on the natural microbial community and Lemna minor plant[J]. Microchemical Journal, 2019, 149:103999 Reinhold D, Vishwanathan S, Park J J, et al. Assessment of plant-driven removal of emerging organic pollutants by duckweed[J]. Chemosphere, 2010, 80(7):687-692 Li J N, Zhou Q Z, Campos L C. Removal of selected emerging PPCP compounds using greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland[J]. Water Research, 2017, 126:252-261 Gatidou G, Oursouzidou M, Stefanatou A, et al. Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems[J]. Science of the Total Environment, 2017, 596-597:12-17 Amy-Sagers C, Reinhardt K, Larson D M. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor[J]. Aquatic Toxicology, 2017, 185:76-85 Supalkova V, Beklova M, Baloun J, et al. Affecting of aquatic vascular plant Lemna minor by cisplatin revealed by voltammetry[J]. Bioelectrochemistry, 2008, 72(1):59-65 Prasertsup P, Ariyakanon N. Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.)[J]. International Journal of Phytoremediation, 2011, 13(4):383-395 Allam A, Tawfik A, Negm A, et al. Treatment of drainage water containing pharmaceuticals using duckweed (Lemna gibba)[J]. Energy Procedia, 2015, 74:973-980 Iatrou E I, Gatidou G, Damalas D, et al. Fate of antimicrobials in duckweed Lemna minor wastewater treatment systems[J]. Journal of Hazardous Materials, 2017, 330:116-126 Qu H, Ma R X, Wang B, et al. Effects of microplastics on the uptake, distribution and biotransformation of chiral antidepressant venlafaxine in aquatic ecosystem[J]. Journal of Hazardous Materials, 2018, 359:104-112 Singh V, Pandey B, Suthar S. Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza:Growth, oxidative stress, biochemical traits and antibiotic degradation[J]. Chemosphere, 2018, 201:492-502 Muerdter C P, LeFevre G H. Synergistic Lemna duckweed and microbial transformation of imidacloprid and thiacloprid neonicotinoids[J]. Environmental Science & Technology Letters, 2019, 6(12):761-767 Topal M, Öbek E, Uslu Şenel G, et al. Removal of tetracycline antibiotic by Lemna gibba L. from aqueous solutions[J]. Water and Environment Journal, 2020, 34(1):37-44 Can-Terzi B, Goren A Y, Okten H E, et al. Biosorption of methylene blue from water by live Lemna minor[J]. Environmental Technology & Innovation, 2021, 22:101432 Singh V, Pandey B, Suthar S. Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system[J]. Ecotoxicology and Environmental Safety, 2019, 179:88-95 Volesky B. Biosorption and me[J]. Water Research, 2007, 41(18):4017-4029 王建龙, 陈灿. 生物吸附法去除重金属离子的研究进展[J]. 环境科学学报, 2010, 30(4):673-701 Wang J L, Chen C. Research advances in heavy metal removal by biosorption[J]. Acta Scientiae Circumstantiae, 2010, 30(4):673-701(in Chinese)
Tsezos M. Biosorption:A Mechanistic Approach[M]//Advances in Biochemical Engineering/Biotechnology. Berlin, Heidelberg:Springer Berlin Heidelberg, 2013:173-209 Xiong Q, Hu L X, Liu Y S, et al. Microalgae-based technology for antibiotics removal:From mechanisms to application of innovational hybrid systems[J]. Environment International, 2021, 155:106594 Zhang D Q, Gersberg R M, Ng W J, et al. Removal of pharmaceuticals and personal care products in aquatic plant-based systems:A review[J]. Environmental Pollution, 2014, 184:620-639 Imron M F, Ananta A R, Ramadhani I S, et al. Potential of Lemna minor for removal of methylene blue in aqueous solution:Kinetics, adsorption mechanism, and degradation pathway[J]. Environmental Technology & Innovation, 2021, 24:101921 Topal M, Uslu Şenel G, Öbek E, et al. Bioaccumulation of tetracycline and degradation products in Lemna gibba L. exposed to secondary effluents[J]. Desalination and Water Treatment, 2016, 57(18):8270-8277 Madikizela L M, Ncube S, Chimuka L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species:A review[J]. Science of the Total Environment, 2018, 636:477-486 Zhang C, Feng Y, Liu Y W, et al. Uptake and translocation of organic pollutants in plants:A review[J]. Journal of Integrative Agriculture, 2017, 16(8):1659-1668 Miller E L, Nason S L, Karthikeyan K G, et al. Root uptake of pharmaceuticals and personal care product ingredients[J]. Environmental Science & Technology, 2016, 50(2):525-541 Collins C, Fryer M, Grosso A. Plant uptake of non ionic organic chemicals[J]. Environmental Science & Technology, 2006, 40(1):45-52 Brain R A, Johnson D J, Richards S M, et al. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test[J]. Environmental Toxicology and Chemistry, 2004, 23(2):371-382 Pomati F, Netting A G, Calamari D, et al. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor[J]. Aquatic Toxicology, 2004, 67(4):387-396 Gomes M P, Gonçalves C A, de Brito J C M, et al. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.):Implications for energy metabolism and antibiotic-uptake ability[J]. Journal of Hazardous Materials, 2017, 328:140-149 李伟明, 鲍艳宇, 周启星. 四环素类抗生素降解途径及其主要降解产物研究进展[J]. 应用生态学报, 2012, 23(8):2300-2308 Li W M, Bao Y Y, Zhou Q X. Degradation pathways and main degradation products of tetracycline antibiotics:Research progress[J]. Chinese Journal of Applied Ecology, 2012, 23(8):2300-2308(in Chinese)
刘伟, 王慧, 陈小军, 等. 抗生素在环境中降解的研究进展[J]. 动物医学进展, 2009, 30(3):89-94 Liu W, Wang H, Chen X J, et al. Progress on degradation of antibiotics in environment[J]. Progress in Veterinary Medicine, 2009, 30(3):89-94(in Chinese)
Ohta D, Mizutani M. Redundancy or flexibility:Molecular diversity of the electron transfer components for P450 monooxygenases in higher plants[J]. Frontiers in Bioscience:A Journal and Virtual Library, 2004, 9:1587-1597 He Y J, Langenhoff A A M, Sutton N B, et al. Metabolism of ibuprofen by Phragmites australis:Uptake and phytodegradation[J]. Environmental Science & Technology, 2017, 51(8):4576-4584 Kingbäck M, Karlsson L, Zackrisson A L, et al. Influence of CYP2D6 genotype on the disposition of the enantiomers of venlafaxine and its major metabolites in postmortem femoral blood[J]. Forensic Science International, 2012, 214(1-3):124-134 Pietrini F, Di Baccio D, Aceña J, et al. Ibuprofen exposure in Lemna gibba L.:Evaluation of growth and phytotoxic indicators, detection of ibuprofen and identification of its metabolites in plant and in the medium[J]. Journal of Hazardous Materials, 2015, 300:189-193 Shaw L J, Burns R G. Biodegradation of organic pollutants in the rhizosphere[J]. Advances in Applied Microbiology, 2003, 53:1-60 黄俊伟, 闯绍闯, 陈凯, 等. 有机污染物的植物-微生物联合修复技术研究进展[J]. 浙江大学学报:农业与生命科学版, 2017, 43(6):757-765 Huang J W, Chuang S C, Chen K, et al. Progress on plant-microorganism combined remediation of organic pollutants[J]. Journal of Zhejiang University:Agriculture and Life Sciences, 2017, 43(6):757-765(in Chinese)
张昕怡, 田卓炎, 张成, 等. 植物修复多环芳烃污染土壤的根际效应机制研究进展[J]. 土壤通报, 2021, 52(5):1251-1260 Zhang X Y, Tian Z Y, Zhang C, et al. The mechanism of rhizosphere effect on phytoremediation of polycyclic aromatic hydrocarbons in soil:A review[J]. Chinese Journal of Soil Science, 2021, 52(5):1251-1260(in Chinese)
Toyama T, Yu N, Kumada H, et al. Accelerated aromatic compounds degradation in aquatic environment by use of interaction between Spirodela polyrrhiza and bacteria in its rhizosphere[J]. Journal of Bioscience and Bioengineering, 2006, 101(4):346-353 Kristanti R A, Kanbe M, Hadibarata T, et al. Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrrhiza[J]. Environmental Science and Pollution Research International, 2012, 19(5):1852-1858 Ogata Y, Toyama T, Yu N, et al. Occurrence of 4-tert-butylphenol (4-t-BP) biodegradation in an aquatic sample caused by the presence of Spirodela polyrrhiza and isolation of a 4-t-BP-utilizing bacterium[J]. Biodegradation, 2013, 24(2):191-202 Radulovič O, Stankovič S, Uzelac B, et al. Phenol removal capacity of the common duckweed (Lemna minor L.) and six phenol-resistant bacterial strains from its rhizosphere:In vitro evaluation at high phenol concentrations[J]. Plants, 2020, 9(5):E599 Cheng J J, Stomp A. Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed[J]. Clean-Soil Air Water, 2009, 37:17-26 Ali S, Abbas Z, Rizwan M, et al. Application of floating aquatic plants in phytoremediation of heavy metals polluted water:A review[J]. Sustainability, 2020, 12(5):1927 -

计量
- 文章访问数: 2588
- HTML全文浏览数: 2588
- PDF下载数: 63
- 施引文献: 0