浮萍在PPCPs修复中的应用与机理研究

周培亮, 熊倩, 吴颖琳, 刘有胜, 刘芳, 应光国. 浮萍在PPCPs修复中的应用与机理研究[J]. 生态毒理学报, 2022, 17(5): 128-138. doi: 10.7524/AJE.1673-5897.20220421001
引用本文: 周培亮, 熊倩, 吴颖琳, 刘有胜, 刘芳, 应光国. 浮萍在PPCPs修复中的应用与机理研究[J]. 生态毒理学报, 2022, 17(5): 128-138. doi: 10.7524/AJE.1673-5897.20220421001
Zhou Peiliang, Xiong Qian, Wu Yinglin, Liu Yousheng, Liu Fang, Ying Guangguo. Research Advances on Application and Mechanisms of Duckweed in Bioremediation of PPCPs[J]. Asian journal of ecotoxicology, 2022, 17(5): 128-138. doi: 10.7524/AJE.1673-5897.20220421001
Citation: Zhou Peiliang, Xiong Qian, Wu Yinglin, Liu Yousheng, Liu Fang, Ying Guangguo. Research Advances on Application and Mechanisms of Duckweed in Bioremediation of PPCPs[J]. Asian journal of ecotoxicology, 2022, 17(5): 128-138. doi: 10.7524/AJE.1673-5897.20220421001

浮萍在PPCPs修复中的应用与机理研究

    作者简介: 周培亮(1997-),男,硕士研究生,研究方向为污染物化学与生态毒理,E-mail:peiliang.zhou@m.scnu.edu.cn
    通讯作者: 熊倩, E-mail: qian.xiong@m.scnu.edu.cn 刘芳, E-mail: liufang77@m.scnu.edu.cn
  • 基金项目:

    广东省自然科学基金资助项目(2020A1515110926);国家自然科学基金资助项目(42107433);中国博士后科学基金资助项目(2021M701272);广东省化学品污染与环境安全重点实验室项目(2019B030301008)

  • 中图分类号: X171.5

Research Advances on Application and Mechanisms of Duckweed in Bioremediation of PPCPs

    Corresponding authors: Xiong Qian, qian.xiong@m.scnu.edu.cn ;  Liu Fang, liufang77@m.scnu.edu.cn
  • Fund Project:
  • 摘要: 近年来,药物和个人护理品(pharmaceuticals and personal care products,PPCPs)作为一类新兴环境污染物,在多种环境介质中频繁检出,并对生态系统和人类健康造成潜在风险,日益引起广泛关注。植物修复技术以植物为基础,通过太阳能驱动的生物过程去除污染物,具有能耗低、成本低、环境友好等独特优势,常用于水体污染修复。浮萍作为植物修复中常用模式生物,体型微小、结构简单、无性繁殖速度快,且具有较强的适应能力和较好的污水修复能力。本文针对浮萍在PPCPs环境污染修复中的研究进展和应用现状进行综述,重点总结了浮萍对PPCPs的去除机制,包括生物吸附、生物吸收和生物降解等,并对未来的研究方向提出展望,以期为浮萍在PPCPs修复中的应用提供科学依据。
  • 加载中
  • Boxall A B, Rudd M A, Brooks B W, et al. Pharmaceuticals and personal care products in the environment:What are the big questions?[J]. Environmental Health Perspectives, 2012, 120(9):1221-1229
    Liu J L, Wong M H. Pharmaceuticals and personal care products (PPCPs):A review on environmental contamination in China[J]. Environment International, 2013, 59:208-224
    Yang Y, Ok Y S, Kim K H, et al. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants:A review[J]. The Science of the Total Environment, 2017, 596-597:303-320
    Wang H, Xi H, Xu L L, et al. Ecotoxicological effects, environmental fate and risks of pharmaceutical and personal care products in the water environment:A review[J]. The Science of the Total Environment, 2021, 788:147819
    Kurade M B, Ha Y H, Xiong J Q, et al. Phytoremediation as a green biotechnology tool for emerging environmental pollution:A step forward towards sustainable rehabilitation of the environment[J]. Chemical Engineering Journal, 2021, 415:129040
    Keerthanan S, Jayasinghe C, Biswas J K, et al. Pharmaceutical and personal care products (PPCPs) in the environment:Plant uptake, translocation, bioaccumulation, and human health risks[J]. Critical Reviews in Environmental Science and Technology, 2021, 51(12):1221-1258
    Tasho R P, Cho J Y. Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants:A review[J]. Science of the Total Environment, 2016, 563-564:366-376
    Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782
    杨晶晶, 赵旭耀, 李高洁, 等. 浮萍的研究及应用[J]. 科学通报, 2021, 66(9):1026-1045

    Yang J J, Zhao X Y, Li G J, et al. Research and application in duckweeds:A review[J]. Chinese Science Bulletin, 2021, 66(9):1026-1045(in Chinese)

    Ekperusi A O, Sikoki F D, Nwachukwu E O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment:State and future perspective[J]. Chemosphere, 2019, 223:285-309
    Zhou H D, Liu X J, Chen X M, et al. Characteristics of removal of waste-water marking pharmaceuticals with typical hydrophytes in the urban rivers[J]. The Science of the Total Environment, 2018, 636:1291-1302
    Iatrou E I, Stasinakis A S, Aloupi M. Cultivating duckweed Lemna minor in urine and treated domestic wastewater for simultaneous biomass production and removal of nutrients and antimicrobials[J]. Ecological Engineering, 2015, 84:632-639
    Bassuney D, Tawfik A. Baffled duckweed pond system for treatment of agricultural drainage water containing pharmaceuticals[J]. International Journal of Phytoremediation, 2017, 19(8):774-780
    Hu H, Li X, Wu S H, et al. Effects of long-term exposure to oxytetracycline on phytoremediation of swine wastewater via duckweed systems[J]. Journal of Hazardous Materials, 2021, 414:125508
    Di Baccio D, Pietrini F, Bertolotto P, et al. Response of Lemna gibba L. to high and environmentally relevant concentrations of ibuprofen:Removal, metabolism and morpho-physiological traits for biomonitoring of emerging contaminants[J]. Science of the Total Environment, 2017, 584-585:363-373
    Matamoros V, Nguyen L X, Arias C A, et al. Evaluation of aquatic plants for removing polar microcontaminants:A microcosm experiment[J]. Chemosphere, 2012, 88(10):1257-1264
    Grenni P, Patrolecco L, Rauseo J, et al. Sulfamethoxazole persistence in a river water ecosystem and its effects on the natural microbial community and Lemna minor plant[J]. Microchemical Journal, 2019, 149:103999
    Reinhold D, Vishwanathan S, Park J J, et al. Assessment of plant-driven removal of emerging organic pollutants by duckweed[J]. Chemosphere, 2010, 80(7):687-692
    Li J N, Zhou Q Z, Campos L C. Removal of selected emerging PPCP compounds using greater duckweed (Spirodela polyrhiza) based lab-scale free water constructed wetland[J]. Water Research, 2017, 126:252-261
    Gatidou G, Oursouzidou M, Stefanatou A, et al. Removal mechanisms of benzotriazoles in duckweed Lemna minor wastewater treatment systems[J]. Science of the Total Environment, 2017, 596-597:12-17
    Amy-Sagers C, Reinhardt K, Larson D M. Ecotoxicological assessments show sucralose and fluoxetine affect the aquatic plant, Lemna minor[J]. Aquatic Toxicology, 2017, 185:76-85
    Supalkova V, Beklova M, Baloun J, et al. Affecting of aquatic vascular plant Lemna minor by cisplatin revealed by voltammetry[J]. Bioelectrochemistry, 2008, 72(1):59-65
    Prasertsup P, Ariyakanon N. Removal of chlorpyrifos by water lettuce (Pistia stratiotes L.) and duckweed (Lemna minor L.)[J]. International Journal of Phytoremediation, 2011, 13(4):383-395
    Allam A, Tawfik A, Negm A, et al. Treatment of drainage water containing pharmaceuticals using duckweed (Lemna gibba)[J]. Energy Procedia, 2015, 74:973-980
    Iatrou E I, Gatidou G, Damalas D, et al. Fate of antimicrobials in duckweed Lemna minor wastewater treatment systems[J]. Journal of Hazardous Materials, 2017, 330:116-126
    Qu H, Ma R X, Wang B, et al. Effects of microplastics on the uptake, distribution and biotransformation of chiral antidepressant venlafaxine in aquatic ecosystem[J]. Journal of Hazardous Materials, 2018, 359:104-112
    Singh V, Pandey B, Suthar S. Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza:Growth, oxidative stress, biochemical traits and antibiotic degradation[J]. Chemosphere, 2018, 201:492-502
    Muerdter C P, LeFevre G H. Synergistic Lemna duckweed and microbial transformation of imidacloprid and thiacloprid neonicotinoids[J]. Environmental Science & Technology Letters, 2019, 6(12):761-767
    Topal M, Öbek E, Uslu Şenel G, et al. Removal of tetracycline antibiotic by Lemna gibba L. from aqueous solutions[J]. Water and Environment Journal, 2020, 34(1):37-44
    Can-Terzi B, Goren A Y, Okten H E, et al. Biosorption of methylene blue from water by live Lemna minor[J]. Environmental Technology & Innovation, 2021, 22:101432
    Singh V, Pandey B, Suthar S. Phytotoxicity and degradation of antibiotic ofloxacin in duckweed (Spirodela polyrhiza) system[J]. Ecotoxicology and Environmental Safety, 2019, 179:88-95
    Volesky B. Biosorption and me[J]. Water Research, 2007, 41(18):4017-4029
    王建龙, 陈灿. 生物吸附法去除重金属离子的研究进展[J]. 环境科学学报, 2010, 30(4):673-701

    Wang J L, Chen C. Research advances in heavy metal removal by biosorption[J]. Acta Scientiae Circumstantiae, 2010, 30(4):673-701(in Chinese)

    Tsezos M. Biosorption:A Mechanistic Approach[M]//Advances in Biochemical Engineering/Biotechnology. Berlin, Heidelberg:Springer Berlin Heidelberg, 2013:173-209
    Xiong Q, Hu L X, Liu Y S, et al. Microalgae-based technology for antibiotics removal:From mechanisms to application of innovational hybrid systems[J]. Environment International, 2021, 155:106594
    Zhang D Q, Gersberg R M, Ng W J, et al. Removal of pharmaceuticals and personal care products in aquatic plant-based systems:A review[J]. Environmental Pollution, 2014, 184:620-639
    Imron M F, Ananta A R, Ramadhani I S, et al. Potential of Lemna minor for removal of methylene blue in aqueous solution:Kinetics, adsorption mechanism, and degradation pathway[J]. Environmental Technology & Innovation, 2021, 24:101921
    Topal M, Uslu Şenel G, Öbek E, et al. Bioaccumulation of tetracycline and degradation products in Lemna gibba L. exposed to secondary effluents[J]. Desalination and Water Treatment, 2016, 57(18):8270-8277
    Madikizela L M, Ncube S, Chimuka L. Uptake of pharmaceuticals by plants grown under hydroponic conditions and natural occurring plant species:A review[J]. Science of the Total Environment, 2018, 636:477-486
    Zhang C, Feng Y, Liu Y W, et al. Uptake and translocation of organic pollutants in plants:A review[J]. Journal of Integrative Agriculture, 2017, 16(8):1659-1668
    Miller E L, Nason S L, Karthikeyan K G, et al. Root uptake of pharmaceuticals and personal care product ingredients[J]. Environmental Science & Technology, 2016, 50(2):525-541
    Collins C, Fryer M, Grosso A. Plant uptake of non ionic organic chemicals[J]. Environmental Science & Technology, 2006, 40(1):45-52
    Brain R A, Johnson D J, Richards S M, et al. Effects of 25 pharmaceutical compounds to Lemna gibba using a seven-day static-renewal test[J]. Environmental Toxicology and Chemistry, 2004, 23(2):371-382
    Pomati F, Netting A G, Calamari D, et al. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp. and Lemna minor[J]. Aquatic Toxicology, 2004, 67(4):387-396
    Gomes M P, Gonçalves C A, de Brito J C M, et al. Ciprofloxacin induces oxidative stress in duckweed (Lemna minor L.):Implications for energy metabolism and antibiotic-uptake ability[J]. Journal of Hazardous Materials, 2017, 328:140-149
    李伟明, 鲍艳宇, 周启星. 四环素类抗生素降解途径及其主要降解产物研究进展[J]. 应用生态学报, 2012, 23(8):2300-2308

    Li W M, Bao Y Y, Zhou Q X. Degradation pathways and main degradation products of tetracycline antibiotics:Research progress[J]. Chinese Journal of Applied Ecology, 2012, 23(8):2300-2308(in Chinese)

    刘伟, 王慧, 陈小军, 等. 抗生素在环境中降解的研究进展[J]. 动物医学进展, 2009, 30(3):89-94

    Liu W, Wang H, Chen X J, et al. Progress on degradation of antibiotics in environment[J]. Progress in Veterinary Medicine, 2009, 30(3):89-94(in Chinese)

    Ohta D, Mizutani M. Redundancy or flexibility:Molecular diversity of the electron transfer components for P450 monooxygenases in higher plants[J]. Frontiers in Bioscience:A Journal and Virtual Library, 2004, 9:1587-1597
    He Y J, Langenhoff A A M, Sutton N B, et al. Metabolism of ibuprofen by Phragmites australis:Uptake and phytodegradation[J]. Environmental Science & Technology, 2017, 51(8):4576-4584
    Kingbäck M, Karlsson L, Zackrisson A L, et al. Influence of CYP2D6 genotype on the disposition of the enantiomers of venlafaxine and its major metabolites in postmortem femoral blood[J]. Forensic Science International, 2012, 214(1-3):124-134
    Pietrini F, Di Baccio D, Aceña J, et al. Ibuprofen exposure in Lemna gibba L.:Evaluation of growth and phytotoxic indicators, detection of ibuprofen and identification of its metabolites in plant and in the medium[J]. Journal of Hazardous Materials, 2015, 300:189-193
    Shaw L J, Burns R G. Biodegradation of organic pollutants in the rhizosphere[J]. Advances in Applied Microbiology, 2003, 53:1-60
    黄俊伟, 闯绍闯, 陈凯, 等. 有机污染物的植物-微生物联合修复技术研究进展[J]. 浙江大学学报:农业与生命科学版, 2017, 43(6):757-765

    Huang J W, Chuang S C, Chen K, et al. Progress on plant-microorganism combined remediation of organic pollutants[J]. Journal of Zhejiang University:Agriculture and Life Sciences, 2017, 43(6):757-765(in Chinese)

    张昕怡, 田卓炎, 张成, 等. 植物修复多环芳烃污染土壤的根际效应机制研究进展[J]. 土壤通报, 2021, 52(5):1251-1260

    Zhang X Y, Tian Z Y, Zhang C, et al. The mechanism of rhizosphere effect on phytoremediation of polycyclic aromatic hydrocarbons in soil:A review[J]. Chinese Journal of Soil Science, 2021, 52(5):1251-1260(in Chinese)

    Toyama T, Yu N, Kumada H, et al. Accelerated aromatic compounds degradation in aquatic environment by use of interaction between Spirodela polyrrhiza and bacteria in its rhizosphere[J]. Journal of Bioscience and Bioengineering, 2006, 101(4):346-353
    Kristanti R A, Kanbe M, Hadibarata T, et al. Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrrhiza[J]. Environmental Science and Pollution Research International, 2012, 19(5):1852-1858
    Ogata Y, Toyama T, Yu N, et al. Occurrence of 4-tert-butylphenol (4-t-BP) biodegradation in an aquatic sample caused by the presence of Spirodela polyrrhiza and isolation of a 4-t-BP-utilizing bacterium[J]. Biodegradation, 2013, 24(2):191-202
    Radulovič O, Stankovič S, Uzelac B, et al. Phenol removal capacity of the common duckweed (Lemna minor L.) and six phenol-resistant bacterial strains from its rhizosphere:In vitro evaluation at high phenol concentrations[J]. Plants, 2020, 9(5):E599
    Cheng J J, Stomp A. Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed[J]. Clean-Soil Air Water, 2009, 37:17-26
    Ali S, Abbas Z, Rizwan M, et al. Application of floating aquatic plants in phytoremediation of heavy metals polluted water:A review[J]. Sustainability, 2020, 12(5):1927
  • 加载中
计量
  • 文章访问数:  2588
  • HTML全文浏览数:  2588
  • PDF下载数:  63
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-04-21
周培亮, 熊倩, 吴颖琳, 刘有胜, 刘芳, 应光国. 浮萍在PPCPs修复中的应用与机理研究[J]. 生态毒理学报, 2022, 17(5): 128-138. doi: 10.7524/AJE.1673-5897.20220421001
引用本文: 周培亮, 熊倩, 吴颖琳, 刘有胜, 刘芳, 应光国. 浮萍在PPCPs修复中的应用与机理研究[J]. 生态毒理学报, 2022, 17(5): 128-138. doi: 10.7524/AJE.1673-5897.20220421001
Zhou Peiliang, Xiong Qian, Wu Yinglin, Liu Yousheng, Liu Fang, Ying Guangguo. Research Advances on Application and Mechanisms of Duckweed in Bioremediation of PPCPs[J]. Asian journal of ecotoxicology, 2022, 17(5): 128-138. doi: 10.7524/AJE.1673-5897.20220421001
Citation: Zhou Peiliang, Xiong Qian, Wu Yinglin, Liu Yousheng, Liu Fang, Ying Guangguo. Research Advances on Application and Mechanisms of Duckweed in Bioremediation of PPCPs[J]. Asian journal of ecotoxicology, 2022, 17(5): 128-138. doi: 10.7524/AJE.1673-5897.20220421001

浮萍在PPCPs修复中的应用与机理研究

    通讯作者: 熊倩, E-mail: qian.xiong@m.scnu.edu.cn ;  刘芳, E-mail: liufang77@m.scnu.edu.cn
    作者简介: 周培亮(1997-),男,硕士研究生,研究方向为污染物化学与生态毒理,E-mail:peiliang.zhou@m.scnu.edu.cn
  • 1. 华南师范大学环境学院, 广州 510006;
  • 2. 华南师范大学广东省化学品污染与环境安全重点实验室, 环境理论化学教育部重点实验室, 广州 510006;
  • 3. 华南师范大学地理科学学院, 广州 510623
基金项目:

广东省自然科学基金资助项目(2020A1515110926);国家自然科学基金资助项目(42107433);中国博士后科学基金资助项目(2021M701272);广东省化学品污染与环境安全重点实验室项目(2019B030301008)

摘要: 近年来,药物和个人护理品(pharmaceuticals and personal care products,PPCPs)作为一类新兴环境污染物,在多种环境介质中频繁检出,并对生态系统和人类健康造成潜在风险,日益引起广泛关注。植物修复技术以植物为基础,通过太阳能驱动的生物过程去除污染物,具有能耗低、成本低、环境友好等独特优势,常用于水体污染修复。浮萍作为植物修复中常用模式生物,体型微小、结构简单、无性繁殖速度快,且具有较强的适应能力和较好的污水修复能力。本文针对浮萍在PPCPs环境污染修复中的研究进展和应用现状进行综述,重点总结了浮萍对PPCPs的去除机制,包括生物吸附、生物吸收和生物降解等,并对未来的研究方向提出展望,以期为浮萍在PPCPs修复中的应用提供科学依据。

English Abstract

参考文献 (60)

返回顶部

目录

/

返回文章
返回