纳米材料与水体其他污染物的复合暴露毒性研究进展
Research Advances on Composite Exposure Toxicity of Nanomaterials and Other Pollutants in Waters
-
摘要: 纳米材料被广泛应用于食品、医疗、化妆品等领域,大量的纳米材料被排入水体,由此引起广泛的水环境污染问题。纳米材料因其小尺寸,较大比表面积的特性,在环境中极易吸附其他污染物而造成复合暴露风险,增加其生物效应的复杂性。本文着重讨论纳米塑料、氧化石墨烯、纳米二氧化钛及单壁碳纳米管与水环境中农药、重金属、持续性有机污染物等的复合暴露风险及对生物体产生的毒性影响,从纳米材料与水体污染物的交互作用和细胞毒作用机制方面论述了纳米材料介导的复合暴露毒性机理,并就构建复合暴露模型进行展望,提出从分子水平上揭示复合毒性规律的研究方向,为水生态污染风险评估提供依据。Abstract: Nanomaterials have been widely used in the fields of food, medicine and cosmetic. A large number of nanomaterials have been discharged into water during use, which causes extensive water environmental pollution. Nanomaterials are highly susceptible to adsorption of other contaminants in the environment due to their small size and large specific surface area, resulting in compound exposure risks and the complexity of their biological effects. This paper focused on the risks of compound exposure of nanomaterials, such as nanoplastics, graphene oxide, titanium dioxide nanoparticles and single-walled carbon nanotubes, and pesticides, heavy metals and persistent organic pollutants in the water environment and the toxic effects on organisms. The possible mechanism of composite exposure toxicity mediated by nanomaterials was discussed from the aspects of interaction between nanomaterials and water pollutants and the mechanism of cytotoxicity. The prospect of the construction of composite exposure model has been put forward, and the research direction of revealing the rule of composite toxicity from the molecular level has been proposed, which will provide a basis for the risk assessment of water ecological pollution.
-
Key words:
- nanomaterials /
- compound exposure /
- biotoxicity /
- aquatic ecological risk
-
-
柳青. 浅谈纳米塑料的生产方法与应用[J]. 黑龙江科技信息, 2012(20):83 Wang Y, Li S S, Yang H Y, et al. Progress in the functional modification of graphene/graphene oxide:A review[J]. RSC Advances, 2020, 10(26):15328-15345 Raja Jamaluddin R Z A, Tan L L, Chong K F, et al. An electrochemical DNA biosensor fabricated from graphene decorated with graphitic nanospheres[J]. Nanotechnology, 2020, 31(48):485501 Grant J J, Pillai S C, Hehir S, et al. Biomedical applications of electrospun graphene oxide[J]. ACS Biomaterials Science & Engineering, 2021, 7(4):1278-1301 刁润丽, 赵世伟. 纳米二氧化钛的应用研究进展[J]. 山西化工, 2021, 41(3):25-26 , 31 Diao R L, Zhao S W. Application research progress of nano-titanium dioxide[J]. Shanxi Chemical Industry, 2021, 41(3):25-26, 31(in Chinese)
李运军, 徐如祥. 单壁碳纳米角在肿瘤治疗中的应用研究进展[J]. 人民军医, 2015, 58(3):330-332 Kruss S, Hilmer A J, Zhang J Q, et al. Carbon nanotubes as optical biomedical sensors[J]. Advanced Drug Delivery Reviews, 2013, 65(15):1933-1950 Anderson J C, Park B J, Palace V P. Microplastics in aquatic environments:Implications for Canadian ecosystems[J]. Environmental Pollution, 2016, 218:269-280 Klaper R D. The known and unknown about the environmental safety of nanomaterials in commerce[J]. Small, 2020, 16(36):e2000690 王静, 刘铮铮, 许行义, 等. 浙江省饮用水源有机毒物污染特征及健康风险研究[J]. 环境污染与防治, 2010, 32(7):29-33 Wang J, Liu Z Z, Xu X Y, et al. Study on pollution pattern and health risk of organic toxicants in Zhejiang source water[J]. Environmental Pollution & Control, 2010, 32(7):29-33(in Chinese)
马新刚, 李时畅, 孙逊, 等. 纳塑料与草甘膦对铜绿微囊藻的复合毒性机制[J]. 环境保护科学, 2021, 47(3):82-90 Ma X G, Li S C, Sun X, et al. Mechanism of the joint toxicity of nanoplastics and glyphosate on Microcystis aeruginosa[J]. Environmental Protection Science, 2021, 47(3):82-90(in Chinese)
Zhang Q, Qu Q, Lu T, et al. The combined toxicity effect of nanoplastics and glyphosate on Microcystis aeruginosa growth[J]. Environmental Pollution, 2018, 243(Pt B):1106-1112 Qian H F, Zhu K, Lu H P, et al. Contrasting silver nanoparticle toxicity and detoxification strategies in Microcystis aeruginosa and Chlorella vulgaris:New insights from proteomic and physiological analyses[J]. The Science of the Total Environment, 2016, 572:1213-1221 陶玉强, 赵睿涵. 持久性有机污染物在中国湖库水体中的污染现状及分布特征[J]. 湖泊科学, 2020, 32(2):309-324 Tao Y Q, Zhao R H. Occurrence and distribution of persistent organic pollutants in water of Chinese lakes and reservoirs[J]. Journal of Lake Sciences, 2020, 32(2):309-324(in Chinese)
Lin W, Jiang R F, Xiong Y X, et al. Quantification of the combined toxic effect of polychlorinated biphenyls and nano-sized polystyrene on Daphnia magna[J]. Journal of Hazardous Materials, 2019, 364:531-536 Lupton S J, McGarrigle B P, Olson J R, et al. Human liver microsome-mediated metabolism of brominated diphenyl ethers 47, 99, and 153 and identification of their major metabolites[J]. Chemical Research in Toxicology, 2009, 22(11):1802-1809 Wang Q P, Li Y Z, Chen Y R, et al. Toxic effects of polystyre nenanoplastics and polybrominated diphenyl ethers to zebrafish (Danio rerio)[J]. Fish & Shellfish Immunology, 2022, 126:21-33 Bedoux G, Roig B, Thomas O, et al. Occurrence and toxicity of antimicrobial triclosan and by-products in the environment[J]. Environmental Science and Pollution Research International, 2012, 19(4):1044-1065 Jeong C B, Kang H M, Lee Y H, et al. Nanoplastic ingestion enhances toxicity of persistent organic pollutants (POPs) in the monogonont rotifer Brachionus koreanus via multixenobiotic resistance (MXR) disruption[J]. Environmental Science & Technology, 2018, 52(19):11411-11418 Jeong C B, Kang H M, Lee M C, et al. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana[J]. Scientific Reports, 2017, 7:41323 Perera F, Tang D L, Whyatt R, et al. DNA damage from polycyclic aromatic hydrocarbons measured by benzo[a]pyrene-DNA adducts in mothers and newborns from Northern Manhattan, the World Trade Center Area, Poland, and China[J]. Cancer Epidemiology, Biomarkers & Prevention:A Publication of the American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology, 2005, 14(3):709-714 Martínez-Álvarez I, LeMenach K, Devier M H, et al. Screening of the toxicity of polystyrene nano- and microplastics alone and in combination with benzo(a)pyrene in brine shrimp larvae and zebrafish embryos[J]. Nanomaterials, 2022, 12(6):941 Lieke T, Zhang X C, Steinberg C E W, et al. Overlooked risks of biochars:Persistent free radicals trigger neurotoxicity in Caenorhabditis elegans[J]. Environmental Science & Technology, 2018, 52(14):7981-7987 周小君. 生物炭和典型纳米颗粒对小球藻生长的复合影响[D]. 重庆:重庆大学, 2021:35-42 Zhou X J. Effect of biochar and typical nanoparticles on the growth of green algae Chlorella pyrenoidosa [D]. Chongqing:Chongqing University, 2021:35 -42(in Chinese)
冯西宁, 苏跃光, 税永红. 腐植酸类物质在水环境中的作用[C]//2013年水资源生态保护与水污染控制研讨会论文集. 哈尔滨:中国环境科学学会, 2013:60-64 Wu J Y, Jiang R F, Lin W, et al. Effect of salinity and humic acid on the aggregation and toxicity of polystyrenenanoplastics with different functional groups and charges[J]. Environmental Pollution, 2019, 245:836-843 Zhang Y, Chen Y S, Westerhoff P, et al. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles[J]. Water Research, 2009, 43(17):4249-4257 Canesi L, Frenzilli G, Balbi T, et al. Interactive effects of n-TiO2 and 2,3,7,8-TCDD on the marine bivalve Mytilus galloprovincialis[J]. Aquatic Toxicology, 2014, 153:53-65 Banni M, Sforzini S, Balbi T, et al. Combined effects of n-TiO2 and 2,3,7,8-TCDD in Mytilus galloprovincialis digestive gland:A transcriptomic and immunohistochemical study[J]. Environmental Research, 2016, 145:135-144 胡国成, 甘炼, 吴天送, 等. 硫丹对斑马鱼的毒性效应[J]. 动物学杂志, 2008, 43(4):1-6 Hu G C, Gan L, Wu T S, et al. Toxicological effects of endosulfan on Danio rerio[J]. Chinese Journal of Zoology, 2008, 43(4):1-6(in Chinese)
王大延. 等离子体处理和纳米二氧化钛对硫丹生殖毒性的影响[D]. 合肥:中国科学技术大学, 2017:37-40 Wang D Y. Effects of plasma treatment and nano-titanium dioxide on reproductive toxicity of endosulfan[D]. Hefei:University of Science and Technology of China, 2017:37 -40(in Chinese)
皇甫加清, 张耀光, 周传江, 等. 氯氰菊酯暴露对草鱼4种器官组织结构的影响[J]. 淡水渔业, 2011, 41(1):53-57 Huangfu J Q, Zhang Y G, Zhou C J, et al. Effect of cypermethrin on histology of four tissues of Ctenopharyngodon idellus[J]. Freshwater Fisheries, 2011, 41(1):53-57(in Chinese)
李蒙. 纳米二氧化钛和氯氰菊酯复合暴露对斑马鱼的甲状腺内分泌干扰和神经毒性研究[D]. 杭州:浙江大学, 2017:100-109 Li M. Study on thyroid endocrine interference and neurotoxicity of zebrafish exposed to nano-titanium dioxide and cypermethrin[D]. Hangzhou:Zhejiang University, 2017:100 -109(in Chinese)
朱立一, 何伟, 朱璧然. 纳米二氧化硅和铅复合暴露对斑马鱼幼鱼甲状腺内分泌系统的毒性影响[J]. 长江流域资源与环境, 2018, 27(11):2588-2596 Zhu L Y, He W, Zhu B R. Effect of the lead bioconcentration and toxicity combined with silicon dioxide nanoparticles on the thyroid endocrine system of zebrafish larvae[J]. Resources and Environment in the Yangtze Basin, 2018, 27(11):2588-2596(in Chinese)
Hu S C, Han J, Yang L H, et al. Impact of co-exposure to titanium dioxide nanoparticles and Pb on zebrafish embryos[J]. Chemosphere, 2019, 233:579-589 吴婧, 董欣敏, 郑燕芳, 等. 镉致癌的分子机制研究进展[J]. 生态毒理学报, 2015, 10(6):54-61 Wu J, Dong X M, Zheng Y F, et al. Recent research progress in molecular mechanisms of cadmium induced carcinogenesis[J]. Asian Journal of Ecotoxicology, 2015, 10(6):54-61(in Chinese)
辛元元, 陈金媛, 程艳红, 等. 纳米TiO2与重金属Cd对铜绿微囊藻生物效应的影响[J]. 生态毒理学报, 2013, 8(1):23-28 Xin Y Y, Chen J Y, Cheng Y H, et al. Biological effects of nano-TiO2 and heavy metal Cd on M. aeruginosa[J]. Asian Journal of Ecotoxicology, 2013, 8(1):23-28(in Chinese)
张博, 潘进芬, 张雪娇, 等. 纳米TiO2对菲律宾蛤仔消化腺中Cd的蓄积与生化响应的影响[J]. 中国海洋大学学报(自然科学版), 2019, 49(8):37-44 Zhang B, Pan J F, Zhang X J, et al. Effects of TiO2 nanoparticles on Cd accumulation and biochemical responses in digestive gland of Ruditapes philippinarum[J]. Periodical of Ocean University of China, 2019, 49(8):37-44(in Chinese) 杨芬, 朱晓东, 韦朝阳. 陆地水环境中砷的迁移转化[J]. 生态学杂志, 2015, 34(5):1448-1455 Yang F, Zhu X D, Wei C Y. A overview on the process and mechanism of arsenic transformation and transportation in aquatic environment[J]. Chinese Journal of Ecology, 2015, 34(5):1448-1455(in Chinese)
Wang D M, Hu J, Irons D R, et al. Synergistic toxic effect of nano-TiO and As(Ⅴ) on Ceriodaphnia dubia[J]. The Science of the Total Environment, 2011, 409(7):1351-1356 纪红蕊, 陈家驹, 张茜, 等. 双酚A的毒性作用机制[J]. 沈阳工业大学学报, 2015, 37(6):710-715 Ji H R, Chen J J, Zhang Q, et al. Toxic effect mechanism of bisphenol A[J]. Journal of Shenyang University of Technology, 2015, 37(6):710-715(in Chinese)
陈联国, 郭勇勇, 周炳升. 典型有机污染物与纳米复合暴露对斑马鱼的毒理学效应:以双酚A和纳米TiO2为例[C]//第十次全国分析毒理学大会暨第六届分析毒理专业委员会会议论文集. 宜昌:中国毒理学会分析毒理专业委员会, 2018:126-127 赵丽红, 朱小山, 王一翔, 等. 纳米二氧化钛(nTiO2)与双酚A对斜生栅藻(Scenedesmus obliquus)的联合毒性效应[J]. 生态毒理学报, 2015, 10(6):110-120 Zhao L H, Zhu X S, Wang Y X, et al. The combined toxic effect of nanoscale titanium dioxide (nTiO2) and bisphenol A (BPA) on Scenedesmus obliquus[J]. Asian Journal of Ecotoxicology, 2015, 10(6):110-120(in Chinese)
Lammel T, Wassmur B, Mackevica A, et al. Mixture toxicity effects and uptake of titanium dioxide (TiO2) nanoparticles and 3,3',4,4'-tetrachlorobiphenyl (PCB77) in juvenile brown trout following co-exposure via the diet[J]. Aquatic Toxicology, 2019, 213:105195 Fang T, Yu L P, Zhang W C, et al. Effects of humic acid and ionic strength on TiO2 nanoparticles sublethal toxicity to zebrafish[J]. Ecotoxicology, 2015, 24(10):2054-2066 Yang S P, Bar-Ilan O, Peterson R E, et al. Influence of humic acid on titanium dioxide nanoparticle toxicity to developing zebrafish[J]. Environmental Science & Technology, 2013, 47(9):4718-4725 Wu Q, Yan W, Liu C S, et al. Co-exposure with titanium dioxide nanoparticles exacerbates MCLR-induced brain injury in zebrafish[J]. Science of the Total Environment, 2019, 693:133540 Dong Y Y, Chang Y L, Gao H D, et al. Characteristic synergistic cytotoxic effects toward cells in graphene oxide dressing with cadmium and copper ions[J]. Toxicology Research, 2019, 8(6):908-917 Britto R S, Nascimento J P, Serode T, et al. The effects of co-exposure of graphene oxide and copper under different pH conditions in Manila clam Ruditapes philippinarum[J]. Environmental Science and Pollution Research International, 2020, 27(25):30945-30956 Martínez-Álvarez I, LeMenach K, Devier M H, et al. Uptake and effects of graphene oxide nanomaterials alone and in combination with polycyclic aromatic hydrocarbons in zebrafish[J]. The Science of the Total Environment, 2021, 775:145669 Yang J, Zhong W J, Chen P Y, et al. Graphene oxide mitigates endocrine disruption effects of bisphenol A on zebrafish at an early development stage[J]. The Science of the Total Environment, 2019, 697:134158 Wang X H, Qu R J, Liu J Q, et al. Effect of different carbon nanotubes on cadmium toxicity to Daphnia magna:The role of catalyst impurities and adsorption capacity[J]. Environmental Pollution, 2016, 208(Pt B):732-738 Yu Z G, Wang W X. Influences of ambient carbon nanotubes on toxic metals accumulation in Daphnia magna[J]. Water Research, 2013, 47(12):4179-4187 Petersen E J, Akkanen J, Kukkonen J V, et al. Biological uptake and depuration of carbon nanotubes by Daphnia magna[J]. Environmental Science & Technology, 2009, 43(8):2969-2975 Sun R X, Sun Y, Li Q X, et al. Polycyclic aromatic hydrocarbons in sediments and marine organisms:Implications of anthropogenic effects on the coastal environment[J]. The Science of the Total Environment, 2018, 640-641:264-272 Su Y, Yan X M, Pu Y B, et al. Risks of single-walled carbon nanotubes acting as contaminants-carriers:Potential release of phenanthrene in Japanese medaka (Oryzias latipes)[J]. Environmental Science & Technology, 2013, 47(9):4704-4710 Kunacheva C, Fujii S, Tanaka S, et al. Worldwide surveys of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) in water environment in recent years[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2012, 66(12):2764-2771 Jin Y H, Liu W, Sato I, et al. PFOS and PFOA in environmental and tap water in China[J]. Chemosphere, 2009, 77(5):605-611 Li Y X, Men B, He Y, et al. Effect of single-wall carbon nanotubes on bioconcentration and toxicity of perfluorooctane sulfonate in zebrafish (Danio rerio)[J]. The Science of the Total Environment, 2017, 607-608:509-518 Boncel S, Kyzioł-Komosińska J, Krzyżewska I, et al. Interactions of carbon nanotubes with aqueous/aquatic media containing organic/inorganic contaminants and selected organisms of aquatic ecosystems-A review[J]. Chemosphere, 2015, 136:211-221 朱立一, 何伟, 朱璧然. 纳米二氧化硅和铅复合暴露对斑马鱼幼鱼甲状腺内分泌系统的毒性影响[J]. 长江流域资源与环境, 2018, 27(11):2588-2596 Zhu L Y, He W, Zhu B R. Effect of the lead bioconcentration and toxicity combined with silicon dioxide nanoparticles on the thyroid endocrine system of zebrafish larvae[J]. Resources and Environment in the Yangtze Basin, 2018, 27(11):2588-2596(in Chinese)
Ge J, Guo K, Zhang C, et al. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-κB/IκB pathway in heart[J]. The Science of the Total Environment, 2021, 773:145442 Qu K C, Li H Q, Tang K K, et al. Selenium mitigates cadmium-induced adverse effects on trace elements and amino acids profiles in chicken pectoral muscles[J]. Biological Trace Element Research, 2020, 193(1):234-240 Mehri S, Abnous K, Khooei A, et al. Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress[J]. Iranian Journal of Basic Medical Sciences, 2015, 18(9):902-908 de Lima J P, Silva S N, Rueff J, et al. Glycidamide genotoxicity modulated by caspases genes polymorphisms[J]. Toxicology in Vitro, 2016, 34:123-127 Takahashi T, Yoshii M, Kawano T, et al. A new approach for the assessment of acrylamide toxicity using a green paramecium[J]. Toxicology in Vitro, 2005, 19(1):99-105 Azari A, Shokrzadeh M, Zamani E, et al. Cerium oxide nanoparticles protects against acrylamide induced toxicity in HepG2 cells through modulation of oxidative stress[J]. Drug and Chemical Toxicology, 2019, 42(1):54-59 Yi X L, Zhang K K, Han G R, et al. Toxic effect of triphenyltin in the presence of nano zinc oxide to marine copepod Tigriopus japonicus[J]. Environmental Pollution, 2018, 243(Pt A):687-692 -

计量
- 文章访问数: 2319
- HTML全文浏览数: 2319
- PDF下载数: 131
- 施引文献: 0