内分泌干扰物与哺乳动物核受体的相互作用

史一姣, 田华, 何杰, 王雪, 汝少国. 内分泌干扰物与哺乳动物核受体的相互作用[J]. 生态毒理学报, 2023, 18(4): 162-173. doi: 10.7524/AJE.1673-5897.20221214001
引用本文: 史一姣, 田华, 何杰, 王雪, 汝少国. 内分泌干扰物与哺乳动物核受体的相互作用[J]. 生态毒理学报, 2023, 18(4): 162-173. doi: 10.7524/AJE.1673-5897.20221214001
Shi Yijiao, Tian Hua, He Jie, Wang Xue, Ru Shaoguo. Interaction of Endocrine Disrupting Chemicals with Mammalian Nuclear Receptors[J]. Asian journal of ecotoxicology, 2023, 18(4): 162-173. doi: 10.7524/AJE.1673-5897.20221214001
Citation: Shi Yijiao, Tian Hua, He Jie, Wang Xue, Ru Shaoguo. Interaction of Endocrine Disrupting Chemicals with Mammalian Nuclear Receptors[J]. Asian journal of ecotoxicology, 2023, 18(4): 162-173. doi: 10.7524/AJE.1673-5897.20221214001

内分泌干扰物与哺乳动物核受体的相互作用

    作者简介: 史一姣(1997-),女,硕士研究生,研究方向为生态毒理学,E-mail:baibujiuzhe1@163.com
    通讯作者: 田华,E-mail:tianhua@ouc.edu.cn; 
  • 基金项目:

    国家自然科学基金资助项目(41876121)

  • 中图分类号: X171.5

Interaction of Endocrine Disrupting Chemicals with Mammalian Nuclear Receptors

    Corresponding author: Tian Hua, tianhua@ouc.edu.cn
  • Fund Project:
  • 摘要: 内分泌干扰物(EDCs)作用于哺乳动物生殖轴或甲状腺轴,影响生长、发育、繁殖、免疫等生理过程并诱发疾病。核受体介导途径是EDCs发挥内分泌干扰作用的最重要方式。在介绍EDCs对哺乳动物的毒性效应与机制的基础上,详细归纳了EDCs与核受体的相互作用,并总结了这一研究领域适用的研究方法。发现采用理论计算模拟、表面等离子共振、荧光偏振、细胞增殖、报告基因等技术方法,目前已经明确了邻苯二甲酸酯类、双酚类、有机氯农药等EDCs能够竞争结合雌激素受体、雄激素受体和/或甲状腺激素受体,以此为作用靶点通过受体介导途径发挥内分泌干扰效应。基于目前的研究现状,我们认为未来的研究应更加注重EDCs与孕激素受体及维甲酸受体的相互作用、膜受体介导途径以及体内实验与体外实验的有机结合。
  • 加载中
  • Mattheij J A, Swarts J J, Lokerse P, et al. Effect of hypothyroidism on the pituitary-gonadal axis in the adult female rat[J]. The Journal of Endocrinology, 1995, 146(1):87-94
    Bleak T C, Calaf G M. Breast and prostate glands affected by environmental substances (Review)[J]. Oncology Reports, 2021, 45(4):20
    Diamanti-Kandarakis E, Bourguignon J P, Giudice L C, et al. Endocrine-disrupting chemicals:An Endocrine Society scientific statement[J]. Endocrine Reviews, 2009, 30(4):293-342
    Frye C A, Bo E, Calamandrei G, et al. Endocrine disrupters:A review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems[J]. Journal of Neuroendocrinology, 2012, 24(1):144-159
    Quagliariello V, Rossetti S, Cavaliere C, et al. Correction:Metabolic syndrome, endocrine disruptors and prostate cancer associations:Biochemical and pathophysiological evidences[J]. Oncotarget, 2017, 8(37):62816
    Patrick S M, Bornman M S, Joubert A M, et al. Effects of environmental endocrine disruptors, including insecticides used for malaria vector control on reproductive parameters of male rats[J]. Reproductive Toxicology, 2016, 61:19-27
    Rattan S, Zhou C Q, Chiang C, et al. Exposure to endocrine disruptors during adulthood:Consequences for female fertility[J]. The Journal of Endocrinology, 2017, 233(3):R109-R129
    Zoeller R T, Brown T R, Doan L L, et al. Endocrine-disrupting chemicals and public health protection:A statement of principles from The Endocrine Society[J]. Endocrinology, 2012, 153(9):4097-4110
    Bokobza E, Hinault C, Tiroille V, et al. The adipose tissue at the crosstalk between EDCs and cancer development[J]. Frontiers in Endocrinology, 2021, 12:691658
    Jeon B K, Jang Y, Lee E M, et al. A systematic approach to metabolic characterization of thyroid-disrupting chemicals and their in vitro biotransformants based on prediction-assisted metabolomic analysis[J]. Journal of Chromatography A, 2021, 1649:462222
    刘晓晨, 刘璟. 环境内分泌干扰物影响垂体促性腺激素的研究进展[J]. 生态毒理学报, 2022, 17(2):1-19

    Liu X C, Liu J. Influences of endocrine-disrupting chemicals on pituitary gonadotropins:A review[J]. Asian Journal of Ecotoxicology, 2022, 17(2):1-19(in Chinese)

    Rubin B S, Murray M K, Damassa D A, et al. Perinatal exposure to low doses of bisphenol A affects body weight, patterns of estrous cyclicity, and plasma LH levels[J]. Environmental Health Perspectives, 2001, 109(7):675-680
    Hill C E, Sapouckey S A, Suvorov A, et al. Developmental exposures to bisphenol S, a BPA replacement, alter estrogen-responsiveness of the female reproductive tract:A pilot study[J]. Cogent Medicine, 2017, 4(1):1317690
    Pogrmic K, Fa S, Dakic V, et al. Atrazine oral exposure of peripubertal male rats downregulates steroidogenesis gene expression in Leydig cells[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2009, 111(1):189-197
    Munier M, Grouleff J, Gourdin L, et al. In vitro effects of the endocrine disruptor p,p'-DDT on human follitropin receptor[J]. Environmental Health Perspectives, 2016, 124(7):991-999
    Moody S, Goh H, Bielanowicz A, et al. Prepubertal mouse testis growth and maturation and androgen production are acutely sensitive to di-n-butyl phthalate[J]. Endocrinology, 2013, 154(9):3460-3475
    Lichtensteiger W, Ceccatelli R, Faass O, et al. Effect of polybrominated diphenylether and PCB on the development of the brain-gonadal axis and gene expression in rats[J]. Organohalogen Compounds, 2003, 61:84-87
    Meeker J D, Hauser R. Exposure to polychlorinated biphenyls (PCBs) and male reproduction[J]. Systems Biology in Reproductive Medicine, 2010, 56(2):122-131
    Krishnamoorthy G, Venkataraman P, Arunkumar A, et al. Ameliorative effect of vitamins (alpha-tocopherol and ascorbic acid) on PCB (Aroclor 1254) induced oxidative stress in rat epididymal sperm[J]. Reproductive Toxicology, 2007, 23(2):239-245
    Lu L P, Zhan T J, Ma M, et al. Thyroid disruption by bisphenol S analogues via thyroid hormone receptor β:in vitro, in vivo, and molecular dynamics simulation study[J]. Environmental Science & Technology, 2018, 52(11):6617-6625
    Sharan S, Nikhil K, Roy P. Disruption of thyroid hormone functions by low dose exposure of tributyltin:An in vitro and in vivo approach[J]. General and Comparative Endocrinology, 2014, 206:155-165
    Ahmed R G. Maternal bisphenol A alters fetal endocrine system:Thyroid adipokine dysfunction[J]. Food and Chemical Toxicology, 2016, 95:168-174
    Hammouda F, Messaoudi I, El Hani J, et al. Reversal of cadmium-induced thyroid dysfunction by selenium, zinc, or their combination in rat[J]. Biological Trace Element Research, 2008, 126(1-3):194-203
    Ghisari M, Bonefeld-Jorgensen E C. Effects of plasticizers and their mixtures on estrogen receptor and thyroid hormone functions[J]. Toxicology Letters, 2009, 189(1):67-77
    Zhang X F, Cui S X, Pan L M, et al. The molecular mechanism of the antagonistic activity of hydroxylated polybrominated biphenyl (OH-BB80) toward thyroid receptor Β[J]. The Science of the Total Environment, 2019, 697:134040
    Kim M J, Park Y J. Bisphenols and thyroid hormone[J]. Endocrinology and Metabolism, 2019, 34(4):340-348
    Sheng Z G, Tang Y, Liu Y X, et al. Low concentrations of bisphenol A suppress thyroid hormone receptor transcription through a nongenomic mechanism[J]. Toxicology and Applied Pharmacology, 2012, 259(1):133-142
    Molina-Molina J M, Amaya E, Grimaldi M, et al. In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bispheno-A congeners and derivatives via nuclear receptors[J]. Toxicology and Applied Pharmacology, 2013, 272(1):127-136
    McEwan I J, Brinkmann A O. Androgen Physiology:Receptor and Metabolic Disorders[M]. South Dartmouth:MDText.com, Inc., 2000
    Cariati F, D'Uonno N, Borrillo F, et al. Bisphenol A:An emerging threat to male fertility[J]. Reproductive Biology and Endocrinology, 2019, 17(1):6
    席令仪, 潘志辉, 段晨晖, 等. 几种典型邻苯二甲酸酯类增塑剂对雌激素受体的干扰效应研究[C]//中国毒理学会计算毒理专业委员. 第四次全国计算毒理学学术会议暨国家自然科学基金委员会化学科学部学科战略研讨会论文集, 延安, 2021-07
    Cao H M, Wang F B, Liang Y, et al. Experimental and computational insights on the recognition mechanism between the estrogen receptor α with bisphenol compounds[J]. Archives of Toxicology, 2017, 91(12):3897-3912
    Mesnage R, Phedonos A, Arno M, et al. Editor's highlight:Transcriptome profiling reveals bisphenol A alternatives activate estrogen receptor alpha in human breast cancer cells[J]. Toxicological Sciences, 2017, 158(2):431-443
    Okubo T, Yokoyama Y, Kano K, et al. Estimation of estrogenic and antiestrogenic activities of selected pesticides by MCF-7 cell proliferation assay[J]. Archives of Environmental Contamination and Toxicology, 2004, 46(4):445-453
    Andersen H R, Andersson A M, Arnold S F, et al. Comparison of short-termestrogenicity tests for identification of hormone-disrupting chemicals[J]. Environmental Health Perspectives, 1999, 107(Suppl 1):89-108
    王建逵, 李明, 杨晓娟, 等. 他莫昔芬对乳腺癌患者的雌激素受体α36的增强转移作用[J]. 中国临床药理学杂志, 2018, 34(9):1042-1044

    Wang J K, Li M, Yang X J, et al. Enhance transfer function of tamoxifen on the estrogen receptor α 36 in the breast cancer patients[J]. The Chinese Journal of Clinical Pharmacology, 2018, 34(9):1042-1044(in Chinese)

    王佩, 李玉珍. 雷洛昔芬——选择性雌激素受体调节剂[J]. 药物不良反应杂志, 2004, 6(5):320-322

    Wang P, Li Y Z. Raloxifene:A selective estrogen receptor mediator[J]. Adverse Drug Reactions Journal, 2004, 6(5):320-322(in Chinese)

    Kitamura S, Jinno N, Ohta S, et al. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A[J]. Biochemical and Biophysical Research Communications, 2002, 293(1):554-559
    季晓亚, 李娜, 袁圣武, 等. 环境雌激素生物效应的作用机制研究进展[J]. 生态毒理学报, 2017, 12(1):38-51

    Ji X Y, Li N, Yuan S W, et al. Research progress in the mechanisms for biological effects of environmental estrogens[J]. Asian Journal of Ecotoxicology, 2017, 12(1):38-51(in Chinese)

    黄苑, 苏晓鸥, 王瑞国, 等. 多氯联苯羟基化代谢物及其雌激素效应研究进展[J]. 生态毒理学报, 2018, 13(5):58-68

    Huang Y, Su X O, Wang R G, et al. Advances on hydroxylated polychlorinated biphenyls metabolites and the estrogenic effects[J]. Asian Journal of Ecotoxicology, 2018, 13(5):58-68(in Chinese)

    Escande A, Pillon A, Servant N, et al. Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor alpha or beta[J]. Biochemical Pharmacology, 2006, 71(10):1459-1469
    朱婧涵, 薛峤, 张爱茜. 对特辛基苯酚干扰雌激素受体作用的分子基础及其对ERβ亚型选择性结合的理论研究[J]. 生态毒理学报, 2016, 11(2):194-200

    Zhu J H, Xue Q, Zhang A Q. Structural basis and molecular mechanism for selective binding of 4-tertoctylphenol to estrogen receptor[J]. Asian Journal of Ecotoxicology, 2016, 11(2):194-200(in Chinese)

    Keiler A M, Zierau O, Wolf S, et al. Androgen- and estrogen-receptor mediated activities of 4-hydroxytestosterone, 4-hydroxyandrostenedione and their human metabolites in yeast based assays[J]. Toxicology Letters, 2018, 292:39-45
    Wang J Y, Wang J P, Liu J S, et al. The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor α, androgen receptor and thyroid hormone receptor β and aquatic toxicities towards freshwater organisms[J]. Environmental Pollution, 2018, 240:396-402
    Yaş P, Ayaz G, User S D, et al. Molecular mechanism of estrogen-estrogen receptor signaling[J]. Reproductive Medicine and Biology, 2017, 16(1):4-20
    Shibusawa N, Hollenberg A N, Wondisford F E. Thyroid hormone receptor DNA binding is required for both positive and negative gene regulation[J]. The Journal of Biological Chemistry, 2003, 278(2):732-738
    Wu Y F, Koenig R J. Gene regulation by thyroid hormone[J]. Trends in Endocrinology & Metabolism, 2000, 11(6):207-211
    Yen P M. Physiological and molecular basis of thyroid hormone action[J]. Physiological Reviews, 2001, 81(3):1097-1142
    Yu C, Wang C, Lu Z B, et al. The endocrine-disrupting potential of four chlorophenols by in vitro and in silico assay[J]. Chemosphere, 2019, 218:941-947
    Yang J, Chan K M. Evaluation of the toxic effects of brominated compounds (BDE-47, 99, 209, TBBPA) and bisphenol A (BPA) using a zebrafish liver cell line, ZFL[J]. Aquatic Toxicology, 2015, 159:138-147
    Kitamura S, Jinno N, Ohta S, et al. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A[J]. Biochemical and Biophysical Research Communications, 2002, 293(1):554-559
    张婧. 双酚A对F344大鼠甲状腺组织雌激素受体α表达的影响[D]. 济南:山东大学, 2017:10-26 Zhang J. The effect of bisphenol A on expression of estrogen receptor α in thyroids of F344 rats[D]. Ji'nan:Shandong University, 2016

    :10-26(in Chinese)

    胡伟婷, 关海霞, 滕卫平. 环境内分泌干扰物对甲状腺影响[J]. 中国公共卫生, 2013, 29(2):306-309
    Li F, Xie Q, Li X H, et al. Hormone activity of hydroxylated polybrominated diphenyl ethers on human thyroid receptor-beta:in vitro and in silico investigations[J]. Environmental Health Perspectives, 2010, 118(5):602-606
    Zhang Y F, Ren X M, Li Y Y, et al. Bisphenol A alternatives bisphenol S and bisphenol F interfere with thyroid hormone signaling pathway in vitro and in vivo[J]. Environmental Pollution, 2018, 237:1072-1079
    Cimmino I, Fiory F, Perruolo G, et al. Potential mechanisms of bisphenol A (BPA) contributing to human disease[J]. International Journal of Molecular Sciences, 2020, 21(16):5761
    Gorini F, Bustaffa E, Coi A, et al. Bisphenols as environmental triggers of thyroid dysfunction:Clues and evidence[J]. International Journal of Environmental Research and Public Health, 2020, 17(8):2654
    Hamers T, Kamstra J H, Sonneveld E, et al. In vitro profiling of the endocrine-disrupting potency of brominated flame retardants[J]. Toxicological Sciences:An Official Journal of the Society of Toxicology, 2006, 92(1):157-173
    Hamers T, Kamstra J H, Sonneveld E, et al. Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47)[J]. Molecular Nutrition & Food Research, 2008, 52(2):284-298
    Scott R E, Wu-Peng X S, Yen P M, et al. Interactions of estrogen- and thyroid hormone receptors on a progesterone receptor estrogen response element (ERE) sequence:A comparison with the vitellogenin A2 consensus ERE[J]. Molecular Endocrinology, 1997, 11(11):1581-1592
    Yarwood N J, Gurr J A, Sheppard M C, et al. Estradiol modulates thyroid hormone regulation of the human glycoprotein hormone alpha subunit gene[J]. The Journal of Biological Chemistry, 1993, 268(29):21984-21989
    Zsarnovszky A, Kiss D, Jocsak G, et al. Thyroid hormone- and estrogen receptor interactions with natural ligands and endocrine disruptors in the cerebellum[J]. Frontiers in Neuroendocrinology, 2018, 48:23-36
    Pinzi, Rastelli G. Molecular docking:Shifting paradigms in drug discovery[J]. International Journal of Molecular Sciences, 2019, 20(18):4331
    门通. 新型冠状病毒主蛋白酶与其潜在抑制剂相互作用的分子动力学模拟[D]. 长春:吉林大学, 2021:12-42 Men T. Molecular dynamics simulation of the interaction between the novel coronavirus main protease and its potential inhibitors[D]. Changchun:Jilin University, 2021:12

    -42(in Chinese)

    Usami M, Mitsunaga K, Ohno Y. Estrogen receptor binding assay of chemicals with a surface plasmon resonance biosensor[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2002, 81(1):47-55
    Fortugno C, Varchi G, Guerrini A, et al. Optical biosensor analysis in studying new synthesized bicalutamide analogs binding to androgen receptor[J]. Journal of Pharmaceutical and Biomedical Analysis, 2014, 95:151-157
    Combes R D. Endocrine disruptors:A critical review of in vitro and in vivo testing strategies for assessing their toxic hazard to humans[J]. Alternatives to Laboratory Animals, 2000, 28(1):81-118
    Tanji M, Katz B H, Spink B C, et al. Growth inhibition of MCF-7 cells by estrogen is dependent upon a serum factor[J]. Anticancer Research, 2000, 20(4):2779-2783
    Ghisari M, Bonefeld-Jorgensen E C. Impact of environmental chemicals on the thyroid hormone function in pituitary rat GH3 cells[J]. Molecular and Cellular Endocrinology, 2005, 244(1-2):31-41
    Gutleb A C, Meerts I A, Bergsma J H, et al. T-Screen as a tool to identify thyroid hormone receptor active compounds[J]. Environmental Toxicology and Pharmacology, 2005, 19(2):231-238
    Kim S, Jung J, Lee I, et al. Thyroid disruption by triphenyl phosphate, an organophosphate flame retardant, in zebrafish (Danio rerio) embryos/larvae, and in GH3 and FRTL-5 cell lines[J]. Aquatic Toxicology, 2015, 160:188-196
    Xia Y, Mo Y, Yang Q Y, et al. Iodoacetic acid disrupting the thyroid endocrine system in vitro and in vivo[J]. Environmental Science & Technology, 2018, 52(13):7545-7552
    李剑, 任姝娟, 马梅, 等. 改进型重组基因酵母TR-GRIP1检测化合物甲状腺激素干扰活性[J]. 环境科学研究, 2011, 24(10):1172-1177

    Li J, Ren S J, Ma M, et al. Use of modified recombinant gene yeast TR-GRIP1 to screen chemicals for thyroid disrupting activity[J]. Research of Environmental Sciences, 2011, 24(10):1172-1177(in Chinese)

    Sonneveld E, Riteco J A C, Jansen H J, et al. Comparison of in vitro and in vivo screening models for androgenic and estrogenic activities[J]. Toxicological Sciences, 2006, 89(1):173-187
    Grimm S L, Hartig S M, Edwards D P. Progesterone receptor signaling mechanisms[J]. Journal of Molecular Biology, 2016, 428(19):3831-3849
    Rowan B G, O'Malley B W. Progesterone receptor coactivators[J]. Steroids, 2000, 65(10-11):545-549
    Burris T P, Nawaz Z, Tsai M J, et al. A nuclear hormone receptor-associated protein that inhibits transactivation by the thyroid hormone and retinoic acid receptors[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(21):9525-9529
    Alvarez S, Bourguet W, Gronemeyer H, et al. Retinoic acid receptor modulators:A perspective on recent advances and promises[J]. Expert Opinion on Therapeutic Patents, 2011, 21(1):55-63
    Ren X M, Guo L H, Gao Y, et al. Hydroxylated polybrominated diphenyl ethers exhibit different activities on thyroid hormone receptors depending on their degree of bromination[J]. Toxicology and Applied Pharmacology, 2013, 268(3):256-263
    Fuentes N, Silveyra P. Estrogen receptor signaling mechanisms[J]. Advances in Protein Chemistry and Structural Biology, 2019, 116:135-170
    Hammes S R, Levin E R. Extranuclear steroid receptors:Nature and actions[J]. Endocrine Reviews, 2007, 28(7):726-741
    Thomas P. Rapid steroid hormone actions initiated at the cell surface and the receptors that mediate them with an emphasis on recent progress in fish models[J]. General and Comparative Endocrinology, 2012, 175(3):367-383
    Tokarz J, Möller G, Hrabě de Angelis M, et al. Steroids in teleost fishes:A functional point of view[J]. Steroids, 2015, 103:123-144
    Davis P J, Zhou M, Davis F B, et al. Mini-review:Cell surface receptor for thyroid hormone and nongenomic regulation of ion fluxes in excitable cells[J]. Physiology & Behavior, 2010, 99(2):237-239
    Hammes S R, Davis P J. Overlapping nongenomic and genomic actions of thyroid hormone and steroids[J]. Best Practice & Research Clinical Endocrinology & Metabolism, 2015, 29(4):581-593
    Nadal A, Fuentes E, Ripoll C, et al. Extranuclear-initiated estrogenic actions of endocrine disrupting chemicals:Is there toxicology beyond Paracelsus?[J]. The Journal of Steroid Biochemistry and Molecular Biology, 2018, 176:16-22
    Kong X T, Sun H Y, Pan P C, et al. Importance of protein flexibility in molecular recognition:A case study on Type-I1/2 inhibitors of ALK[J]. Physical Chemistry Chemical Physics, 2018, 20(7):4851-4863
    Alonso-Magdalena P, Laribi O, Ropero A B, et al. Low doses of bisphenol A and diethylstilbestrol impair Ca2+ signals in pancreatic alpha-cells through a nonclassical membrane estrogen receptor within intact islets of Langerhans[J]. Environmental Health Perspectives, 2005, 113(8):969-977
  • 加载中
计量
  • 文章访问数:  1657
  • HTML全文浏览数:  1657
  • PDF下载数:  111
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-12-14
史一姣, 田华, 何杰, 王雪, 汝少国. 内分泌干扰物与哺乳动物核受体的相互作用[J]. 生态毒理学报, 2023, 18(4): 162-173. doi: 10.7524/AJE.1673-5897.20221214001
引用本文: 史一姣, 田华, 何杰, 王雪, 汝少国. 内分泌干扰物与哺乳动物核受体的相互作用[J]. 生态毒理学报, 2023, 18(4): 162-173. doi: 10.7524/AJE.1673-5897.20221214001
Shi Yijiao, Tian Hua, He Jie, Wang Xue, Ru Shaoguo. Interaction of Endocrine Disrupting Chemicals with Mammalian Nuclear Receptors[J]. Asian journal of ecotoxicology, 2023, 18(4): 162-173. doi: 10.7524/AJE.1673-5897.20221214001
Citation: Shi Yijiao, Tian Hua, He Jie, Wang Xue, Ru Shaoguo. Interaction of Endocrine Disrupting Chemicals with Mammalian Nuclear Receptors[J]. Asian journal of ecotoxicology, 2023, 18(4): 162-173. doi: 10.7524/AJE.1673-5897.20221214001

内分泌干扰物与哺乳动物核受体的相互作用

    通讯作者: 田华,E-mail:tianhua@ouc.edu.cn; 
    作者简介: 史一姣(1997-),女,硕士研究生,研究方向为生态毒理学,E-mail:baibujiuzhe1@163.com
  • 1. 中国海洋大学海洋生命学院, 青岛 266003;
  • 2. 青岛国海浩瀚海洋工程咨询有限公司, 青岛 266100
基金项目:

国家自然科学基金资助项目(41876121)

摘要: 内分泌干扰物(EDCs)作用于哺乳动物生殖轴或甲状腺轴,影响生长、发育、繁殖、免疫等生理过程并诱发疾病。核受体介导途径是EDCs发挥内分泌干扰作用的最重要方式。在介绍EDCs对哺乳动物的毒性效应与机制的基础上,详细归纳了EDCs与核受体的相互作用,并总结了这一研究领域适用的研究方法。发现采用理论计算模拟、表面等离子共振、荧光偏振、细胞增殖、报告基因等技术方法,目前已经明确了邻苯二甲酸酯类、双酚类、有机氯农药等EDCs能够竞争结合雌激素受体、雄激素受体和/或甲状腺激素受体,以此为作用靶点通过受体介导途径发挥内分泌干扰效应。基于目前的研究现状,我们认为未来的研究应更加注重EDCs与孕激素受体及维甲酸受体的相互作用、膜受体介导途径以及体内实验与体外实验的有机结合。

English Abstract

参考文献 (88)

返回顶部

目录

/

返回文章
返回