鄂尔多斯遗鸥国家级自然保护区桃-阿海子浮游细菌多样性及其与水体重金属浓度的关联性分析
Diversity of Planktonic Bacteria and Its Correlation with Heavy Metal Concentration in T-A Nur in Erdos Relic Gull National Nature Reserve
-
摘要: 桃-阿海子是遗鸥(Larus relictus)重要繁殖地,一度趋于干涸,为保护该重要湿地及其中繁殖和迁徙的珍稀鸟类,当地政府启动引黄工程进行补水,所补水为矿井水,矿井水中通常含有大量重金属,重金属又会对水体微生物产生影响,微生物是湖泊生态系统的重要驱动者,且对于生存其中的鸟类具有重要影响。所以为评估所补矿井水对当地生态系统及珍稀候鸟的影响,本研究通过16S rRNA高通量测序的方法分析了鄂尔多斯遗鸥国家级自然保护区桃-阿海子引黄工程注水口1(ZSK1)、注水口2(ZSK2)、湖边(HB)和湖心岛(HXD)4个区域的水样样本中浮游细菌的多样性,并对其与水体重金属元素含量进行关联性分析。结果显示ZSK1和ZSK2水样样本中微生物不存在显著差异,HB和HXD水样样本中微生物多样性不存在显著差异,而ZSK与HB和HXD样本中微生物多样性存在显著差异。微生物群落组成分析发现这几个区域的主要细菌门是变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)、疣微菌门(Verrucomicrobiota)和放线菌门(Actinobacteria),在属水平存在着大量的未知微生物。该区域不同采样点水样中重金属元素含量存在差异,并驱动了微生物群落的构建过程,显著影响4个采样点微生物群落结构的环境变量依次为Pb、Cr和Ni。在HB和HXD样本中耐受重金属的细菌丰度高一些,而在ZSK样本中其丰度较低。该结果对于评估和预测重金属污染等人为活动对微生物群落的影响具有重要意义,并将为鄂尔多斯遗鸥国家级自然保护区桃-阿海子生态环境管理和污染防治提供重要参考,同时为珍稀野生动物保护提供依据。
-
关键词:
- 重金属元素 /
- 浮游细菌 /
- 16S rRNA高通量测序 /
- 桃-阿海子
Abstract: T-A Nur, which once tended to dry up, is an important breeding ground for Relict Gull (Larus relictus). In order to protect this important wetland where the rare birds breed and migrate, the local government initiated a programme named “Yellow River Diversion Project” to replenish water to this wetland. The supplemented water originated from mine water that usually contains a large amount of heavy metals, which will have an impact on water microorganisms. Microorganisms are important drivers of lake ecosystems, and simultaneously affects the birds living here significantly. In order to evaluate the impact of the supplemented mine water on the local ecosystem and rare migratory birds, this study analyzed the planktonic bacteria in the water samples from four areas including the water injection port 1 (ZSK1), water injection port 2 (ZSK2), the lakeside (HB) and the lake island (HXD), and then the relationship between microbial community and heavy metal concentration was carried out with correlation analysis. The results showed that there was no significant difference in the microbial diversity in the water samples from ZSK1 and ZSK2, as well as the water samples from HB and HXD. However, there were significant differences in microbial diversity between the samples from ZSK and the HB or HXD. Analysis of microbial community composition showed that the main bacterial phyla in these regions were Proteobacteria, Bacteroidetes, Firmicutes, Verrucomicrobiota and Actinobacteria. A large number of unknown microorganisms exist at the genus level. The different levels of heavy metals in different sampling points in this region drive the emergence of differences in microbial community composition. The environmental variables that significantly affected the microbial community structure of the four sampling points were Pb, Cr and Ni in order. Heavy metal-tolerant bacteria were more abundant in HB and HXD samples, but lower in ZSK samples. The results are of great significance for evaluating and predicting the impact of anthropogenic activities such as heavy metal pollution on microbial communities. In addition, these data also provide an important reference for the ecological management and pollution prevention in the T-A Nur wetland, Ordos Relic Gull National Nature Reserve, meanwhile to protect the rare species living in it. -
-
何芬奇, 郭玉民, 陈克林, 等. 初论内蒙古泊江海子矿持续补水对桃—阿海子生境恢复之效益[J]. 湿地科学与管理, 2018, 14(1): 29-32 He F Q, Guo Y M, Chen K L, et al. A preliminary assessment of the effect of continual water supply in Bojianghaizi coal mine on habitat restoration in T-A Nur wetland [J]. Wetland Science & Management, 2018, 14(1): 29-32 (in Chinese)
何芬奇, 邢小军, 肖红, 等. 初论引黄工程对桃-阿海子湿地生境恢复的作用与影响——兼谈泊江海子采矿区地表沉降成塘的例示[J]. 湿地科学与管理, 2019, 15(2): 36-38 He F Q, Xing X J, Xiao H, et al. Primary assessing on the effect of water introducing effort from the Yellow River to the T-A Nur for its wetland habitat recovering—With the case the ecological effect of the nearby mining subsidence surface-ponding [J]. Wetland Science & Management, 2019, 15(2): 36-38 (in Chinese)
McDevitt B, Cavazza M, Beam R, et al. Maximum removal efficiency of barium, strontium, radium, and sulfate with optimum AMD-marcellus flowback mixing ratios for beneficial use in the northern Appalachian Basin [J]. Environmental Science & Technology, 2020, 54(8): 4829-4839 Leclerc H, Schwartzbrod L, Dei-Cas E. Microbial agents associated with waterborne diseases [J]. Critical Reviews in Microbiology, 2002, 28(4): 371-409 曲良娇. 某省饮用水微生物安全状况与风险评估[D]. 武汉: 华中科技大学, 2016: 8 Qu L J. The safety status and risk assessment of microorganisms in the drinking water in a province [D]. Wuhan: Huazhong University of Science and Technology, 2016: 8 (in Chinese) Pruss A, Havelaar A H. The global burden of disease study and applications in water, sanitation and hygiene [R]. London: International Water Association, 2001: 43-59 Pal A, Bhattacharjee S, Saha J, et al. Bacterial survival strategies and responses under heavy metal stress: A comprehensive overview [J]. Critical Reviews in Microbiology, 2022, 48(3): 327-355 Zhang H, Wan Z W, Ding M J, et al. Inherent bacterial community response to multiple heavy metals in sediment from river-lake systems in the Poyang Lake, China [J]. Ecotoxicology and Environmental Safety, 2018, 165: 314-324 Ou Y, Rousseau A N, Wang L X, et al. Identification of the alteration of riparian wetland on soil properties, enzyme activities and microbial communities following extreme flooding [J]. Geoderma, 2019, 337: 825-833 Moghimian N, Hosseini S M, Kooch Y, et al. Impacts of changes in land use/cover on soil microbial and enzyme activities [J]. Catena, 2017, 157: 407-414 Wang J W, Liu T, Sun W L, et al. Bioavailable metal(loid)s and physicochemical features co-mediating microbial communities at combined metal(loid) pollution sites [J]. Chemosphere, 2020, 260: 127619 Gao L, Liu L, Du C, et al. Comparative analysis of fecal bacterial microbiota of six bird species [J]. Frontiers in Veterinary Science, 2021, 8: 791287 郭娜, 孙丽娜, 孟越, 等. 辽河保护区河岸带土壤微生物群落结构特征[J]. 沈阳大学学报(自然科学版), 2016, 28(6): 457-463 Guo N, Sun L N, Meng Y, et al. Soil microbial community structure characteristics of riparian zone in Liaohe River conservation area [J]. Journal of Shenyang University (Natural Science), 2016, 28(6): 457-463 (in Chinese) 王甜甜, 靳德武, 杨建. 内蒙古某矿矿井水重金属污染特征及来源分析[J]. 煤田地质与勘探, 2021, 49(5): 45-51 Wang T T, Jin D W, Yang J. Heavy metal pollution characteristics and source analysis of water drainage from a mine in Inner Mongolia [J]. Coal Geology & Exploration, 2021, 49(5): 45-51 (in Chinese)
何一凡, 肖新宗, 王佳文. 重金属污染对不同生境中微生物群落结构的影响[J]. 环境科学, 2023, 44(4): 2103-2112 He Y F, Xiao X Z, Wang J W. Effects of heavy metal pollution on the structure of microbial communities in different habitats [J]. Environmental Science, 2023, 44(4): 2103-2112 (in Chinese)
Li P, Wang Y H, Dai X Y, et al. Microbial community in high arsenic shallow groundwater aquifers in Hetao Basin of Inner Mongolia, China [J]. PLoS One, 2015, 10(5): e0125844 胡月, 胡东, 于鑫, 等. 千岛湖水源水微生物安全性评价[J]. 环境科学学报, 2021, 41(2): 634-640 Hu Y, Hu D, Yu X, et al. Evaluation for source water biosafety in Qiandao Lake, China [J]. Acta Scientiae Circumstantiae, 2021, 41(2): 634-640 (in Chinese)
Dai J, Wu H P, Zhang C, et al. Responses of soil microbial biomass and bacterial community structure to closed-off management (an ecological natural restoration measures): A case study of Dongting Lake wetland, middle China [J]. Journal of Bioscience and Bioengineering, 2016, 122(3): 345-350 刘亚军, 刘欣, 牟晓真, 等. 大型浅水湖泊鄱阳湖湿地微生物的研究现状[J]. 微生物学通报, 2019, 46(12): 3453-3460 Liu Y J, Liu X, Mou X Z, et al. Research status of microorganisms in a large, shallow Lake Poyang Lake wetland [J]. Microbiology China, 2019, 46(12): 3453-3460 (in Chinese)
Wu H N, Li Y, Zhang J, et al. Sediment bacterial communities in a eutrophic lake influenced by multiple inflow-rivers [J]. Environmental Science and Pollution Research International, 2017, 24(24): 19795-19806 Dai Y, Yang Y Y, Wu Z, et al. Spatiotemporal variation of planktonic and sediment bacterial assemblages in two plateau freshwater lakes at different trophic status [J]. Applied Microbiology and Biotechnology, 2016, 100(9): 4161-4175 Huang W, Jiang X. Profiling of sediment microbial community in Dongting Lake before and after impoundment of the Three Gorges Dam [J]. International Journal of Environmental Research and Public Health, 2016, 13(6): 617 刘明华, 王健鑫, 俞凯成, 等. 东海陆架表层沉积物细菌群落结构及地理分布研究[J]. 海洋与湖沼, 2015, 46(5): 1119-1131 Liu M H, Wang J X, Yu K C, et al. Community structure and geographical distribution of bacterial on surface layer sediments in the East China Sea [J]. Oceanologia et Limnologia Sinica, 2015, 46(5): 1119-1131 (in Chinese)
牛凤霞, 吉芳英, 赵艮, 等. 龙景湖沉积物的细菌群落垂向分布特征[J]. 中国环境科学, 2017, 37(6): 2322-2331 Niu F X, Ji F Y, Zhao G, et al. Vertical distribution of bacterial communities in sediments of Longjing Lake [J]. China Environmental Science, 2017, 37(6): 2322-2331 (in Chinese)
Inagaki F, Nunoura T, Nakagawa S, et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(8): 2815-2820 Zou H Y, He L Y, Gao F Z, et al. Antibiotic resistance genes in surface water and groundwater from mining affected environments [J]. The Science of the Total Environment, 2021, 772: 145516 冯希. 海洋疣微菌的分离、鉴定及疣微菌门分类体系整理[D]. 济南: 山东大学, 2021: 3 Feng X. Isolation, polyphasic taxonomy of marine strains of Verrucomicrobia and updation the classification system of Verrucomicrobia [D]. Jinan: Shandong University, 2021: 3 (in Chinese) Mayer F, Müller V. Adaptations of anaerobic archaea to life under extreme energy limitation [J]. FEMS Microbiology Reviews, 2014, 38(3): 449-472 刘幸春, 王洪杰, 王亚利, 等. 府河水体及沉积物细菌群落结构分布特征及其影响因素[J]. 生态毒理学报, 2021, 16(5): 120-135 Liu X C, Wang H J, Wang Y L, et al. Distribution characteristics and influencing factors of bacteria community structure in water and sediments of Fuhe River [J]. Asian Journal of Ecotoxicology, 2021, 16(5): 120-135 (in Chinese)
翟盼盼, 吴宇骞, 陆坚. 不动杆菌属分类的研究进展[J]. 新发传染病电子杂志, 2020, 5(1): 51-55 , 59 Zhai P P, Wu Y Q, Lu J. Progress of study on acinetobacter classification [J]. Electronic Journal of Emerging Infectious Diseases, 2020, 5(1): 51-55, 59 (in Chinese)
Jose J, Giridhar R, Anas A, et al. Heavy metal pollution exerts reduction/adaptation in the diversity and enzyme expression profile of heterotrophic bacteria in Cochin Estuary, India [J]. Environmental Pollution, 2011, 159(10): 2775-2780 Wei Y Q, Zhao Y, Zhao X Y, et al. Roles of different humin and heavy-metal resistant bacteria from composting on heavy metal removal [J]. Bioresource Technology, 2020, 296: 122375 -

计量
- 文章访问数: 814
- HTML全文浏览数: 814
- PDF下载数: 91
- 施引文献: 0