川南页岩气开发油基钻屑对玉米的生物毒性效应研究
Biotoxic Effect of Oil-based Drilling Cuttings on Maize in Shale Gas Development in Southern Sichuan
-
摘要: 以川南页岩气开发过程中产生的油基岩屑为研究对象,考察不同质量百分比浓度的油基岩屑胁迫对玉米生长过程中生长指标的影响,包括玉米的生物量指标(种子出苗率、地面高度、茎叶鲜质量、茎叶干质量、根长、根鲜质量、根干质量)和生理性指标(叶片叶绿素、过氧化氢(H2O2)、丙二醛(MDA)含量)。结果表明,当油基岩屑的质量百分比为100%时,玉米的出苗率仍在86.67%,油基岩屑对玉米种子的发芽率影响较小;不同质量百分比的油基岩屑胁迫下玉米幼苗的生长情况呈现低促进高抑制的现象,各项生长指标之间呈现显著差异(P<0.05),其中油基岩屑的质量百分比为100%时对玉米培育后期(30 d)地面高度和根的鲜质量显著影响(P<0.001);油基岩屑质量百分比≥50%时,油基岩屑对玉米叶片叶绿素质量浓度、H2O2与MDA的物质的量浓度影响显著(P<0.01);随着种植时间的延长和油基岩屑质量百分比的增加,玉米叶片中叶绿素质量浓度呈下降趋势,叶片中H2O2与MDA的物质的量浓度呈上升趋势,其中当油基岩屑的质量百分比为100%时枯萎的黄叶中叶绿素的质量浓度仅为0.15 mg·g-1,H2O2与MDA的物质的量浓度分别是0.09 nmol·g-1、25.91 μmol·g-1,是空白对照组的7.5倍、3.37倍。因此,油基岩屑对玉米的生物毒性效应表现为“低促进高抑制”,低质量百分比浓度(≤25%)的油基岩屑掺杂对玉米的生长无显著影响,这为页岩气开发过程中产生的油基岩屑利用生物降解及农作物对其修复提供了可能,同时也可为实现页岩气开发平台农作物复垦提供了一定的理论支撑。Abstract: Taking the oil-based drilling cuttings derived from the process of shale gas development in southern Sichuan as the research object, the influence of adversity stress of different mass percentages of oil-based cuttings on the growth targets during the growth process of maize were investigated. The growth targets included biomass indexes (such as seed emergence rate, height over land, stem and leaf fresh weight, stem and leaf dry weight, root length, root fresh weight and root dry weight) and physiological indexes of leaf chlorophyll, hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents. When the mass percentage of oil-based drilling cuttings was 100%, the germination rate of maize was still 86.67%, reflecting the slight influence of oil-based drilling cuttings. The growth of maize seedling under the stress of different mass percentages of oil-based drilling cuttings presented the phenomenon of low concentration promotion and high concentration inhibition. Generally, the differences between various growth indexes were slightly significant (P<0.05). Among them, the plant height and fresh weight of roots in the later period of maize cultivation (30 d) were significantly affected (P<0.001) when the mass percentage of oil-based drilling cuttings was 100%. The oil-based drilling cuttings had significant effect on the mass concentration of chlorophyll and the molar concentrations of H2O2 and MDA in maize leaves (P<0.01) if its mass percentage was ≥50%. With the prolonged planting time and the increasing mass percentage of oil-based drilling cuttings, the mass concentration of chlorophyll in maize leaves decreased, whereas the molar concentrations of H2O2 and MDA in leaves increased. When the mass percentage of oil-based drilling cuttings was 100%, the mass concentration of chlorophyll in the withered yellow leaves was only 0.15 mg·g-1. At the same time, the molar concentrations of H2O2 and MDA were 0.09 nmol·g-1 and 25.91 μmol·g-1, respectively, which were 7.5 and 3.5 times of the blank control group. Therefore, the bio-toxic effects of oil-based drilling cuttings on maize could be demonstrated as the “low concentration promotion and high concentration inhibition”. The doping of oil-based drilling cuttings with a low mass percentage concentration (≤25%) had little effect on the growth of maize, which offers the possibility of using biodegradation and crops to repair the oil-based drilling cuttings derived from the process of shale gas development. Meanwhile, it also provides a certain theoretical support for realizing the crop reclamation on the platform of shale gas development.
-
Key words:
- cadmium /
- oil-based drilling cuttings /
- maize /
- phytotoxicity /
- shale gas development
-
-
张思兰, 张春, 何敏, 等. 水基钻屑特性分析及其土地利用关键问题初探[J]. 安全与环境学报, 2018, 18(3): 1150-1154 Zhang S L, Zhang C, He M, et al. Characteristic analysis of the waterbased drilling cutting and its preliminary study over the key issues of the corresponding land use[J]. Journal of Safety and Environment, 2018, 18(3): 1150-1154(in Chinese)
李强. 页岩气压裂施工质量技术研究[J]. 中国石油和化工标准与质量, 2020, 40(4): 30-31 Li Q. Study on quality technology of shale gas fracturing construction[J]. China Petroleum and Chemical Standard and Quality, 2020, 40(4): 30-31(in Chinese)
Jiang G B, Yu J L, Jiang H S, et al. Physicochemical characteristics of oil-based cuttings from pretreatment in shale gas well sites[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2020, 55(9): 1041-1049 张春, 王朝强, 张思兰, 等. 水基钻屑固化填埋对土壤环境影响变化趋势研究[J]. 安全与环境学报, 2018, 18(5): 1997-2002 Zhang C, Wang C Q, Zhang S L, et al. On changing trend of the effect of water-based drilling cutting solidification landfill on soil environment[J]. Journal of Safety and Environment, 2018, 18(5): 1997-2002(in Chinese)
Ren H Y, Wei Z J, Wang Y, et al. Effects of biochar properties on the bioremediation of the petroleum-contaminated soil from a shale-gas field[J]. Environmental Science and Pollution Research International, 2020, 27(29): 36427-36438 易绍金, 向兴金, 肖稳发, 等. 油田化学剂生物毒性的测定及其分级标准[J]. 油气田环境保护, 1996, 6(3): 45-49 Yi S J, Xiang X J, Xiao W F, et al. Determination of biological toxicity of oil field chemicals and its classification standard[J]. Environmental Protection of Oil & Gas Fields, 1996, 6(3): 45-49(in Chinese)
黄雪静, 崔茂荣, 周长虹, 等. 钻井液生物毒性评价方法对比[J]. 油气田环境保护, 2006, 16(4): 25-27 , 58 Huang X J, Cui M R, Zhou C H, et al. Comparson of biological toxicity assessment methods for drilling fluids[J]. Environmental Protection of Oil & Gas Fields, 2006, 16(4): 25-27, 58(in Chinese)
周名江, 颜天, 李钧, 等. 黑褐新糠虾的急性毒性测试方法及在钻井液毒性评价中的作用[J]. 海洋环境科学, 2001, 20(3): 1-4 Zhou M J, Yan T, Li J, et al. Acute toxicity test method using Neomysis awatschensis and its application in toxicity evaluation of drilling fluid[J]. Marine Environmental Science, 2001, 20(3): 1-4(in Chinese)
李硕, 张毅, 姚棋, 等. 等渗盐胁迫下BR对番茄生长及渗透调节特性的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(4): 130-136, 145 Li S, Zhang Y, Yao Q, et al. Effects of brassinolide on seedling growth and osmotic regulation characteristics of tomato under iso-osmotic salt stress[J]. Journal of Northwest A & F University (Natural Science Edition), 2020, 48(4): 130-136, 145(in Chinese) 查燕, 汤婕, 阮松林. 模拟大气细颗粒物中镉沉降对小白菜的毒性效应研究[J]. 植物科学学报, 2022, 40(1): 96-104 Zha Y, Tang J, Ruan S L. Toxic effects of cadmium deposition on pakchoi (Brassica rapa var. chinensis (L.) Kitamura) seedlings exposed to simulated atmospheric fine particulate matter[J]. Plant Science Journal, 2022, 40(1): 96-104(in Chinese)
熊敏先, 吴迪, 许向宁, 等. 土壤重金属镉对高等植物的毒性效应研究进展[J]. 生态毒理学报, 2021, 16(6): 133-149 Xiong M X, Wu D, Xu X N, et al. Advances in toxic effects of soil heavy metal cadmium on higher plants[J]. Asian Journal of Ecotoxicology, 2021, 16(6): 133-149(in Chinese)
何珊, 郭渊, 王琛, 等. 镍的环境生物地球化学与毒性效应研究进展[J]. 中国环境科学, 2022, 42(5): 2339-2351 He S, Guo Y, Wang C, et al. A comprehensive review on environmental biogeochemistry and toxic effects of nickel[J]. China Environmental Science, 2022, 42(5): 2339-2351(in Chinese)
Vranová E, Inzé D, Van Breusegem F. Signal transduction during oxidative stress[J]. Journal of Experimental Botany, 2002, 53(372): 1227-1236 Apel K, Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373-399 Kwak J M, Nguyen V, Schroeder J I. The role of reactive oxygen species in hormonal responses[J]. Plant Physiology, 2006, 141(2): 323-329 Van Breusegem F, Dat J F. Reactive oxygen species in plant cell death[J]. Plant Physiology, 2006, 141(2): 384-390 刘璨, 李玲. ROS在植物激素信号转导中的作用[J]. 亚热带植物科学, 2008, 37(3): 71-75 Liu C, Li L. Reactive oxygen species and phytohormone signaling transduction pathways[J]. Subtropical Plant Science, 2008, 37(3): 71-75(in Chinese)
Máthé-Gáspár G, Anton A. Phytoremediation study: Factors influencing heavy metal uptake of plants[J]. Acta Biologica Szegediensis, 2005, 49(1-2): 69-70 李静, 依艳丽, 李亮亮, 等. 几种重金属(Cd、Pb、Cu、Zn)在玉米植株不同器官中的分布特征[J]. 中国农学通报, 2006, 22(4): 244-247 Li J, Yi Y L, Li L L, et al. Distribution of heavy metal (Cd Pb Cu Zn) in different organs of maize[J]. Chinese Agricultural Science Bulletin, 2006, 22(4): 244-247(in Chinese)
Klaus A A, Lysenko E A, Kholodova V P. Maize plant growth and accumulation of photosynthetic pigments at short- and long-term exposure to cadmium[J]. Russian Journal of Plant Physiology, 2013, 60(2): 250-259 徐稳定. 超甜38玉米对镉的耐受机理及强化富集研究[D]. 广州: 华南理工, 2014: 9-27 Xu W D. The mechanism of Cd tolerance and the enhancement of Cd phytoremediation in maize (Zea mays L.)CT38[D]. Guangzhou: South China University of Technology, 2014 : 9-27(in Chinese)
Silva S, Ferreira de Oliveira J M P, Dias M C, et al. Antioxidant mechanisms to counteract TiO2-nanoparticles toxicity in wheat leaves and roots are organ dependent[J]. Journal of Hazardous Materials, 2019, 380: 120889 吕冬梅, 朱广龙, 王玥, 等. 苗期重金属胁迫下蓖麻生长、生理和重金属积累效应[J]. 作物学报, 2021, 47(4): 728-737 Lyu D M, Zhu G L, Wang Y, et al. Growth, physiological, and heavy metal accumulation traits at seedling stage under heavy metal stress in castor (Ricinus communis L.)[J]. Acta Agronomica Sinica, 2021, 47(4): 728-737(in Chinese)
刘茵. Cd2+、Zn2+对黑麦草种子萌发及幼苗生长的影响[J]. 湖北农业科学, 2011, 50(18): 3798-3800 Liu Y. Effects of Cd2+ and Zn2+ on seed germination and seedling growth of Lolium perenne L.[J]. Hubei Agricultural Sciences, 2011, 50(18): 3798-3800(in Chinese)
-

计量
- 文章访问数: 879
- HTML全文浏览数: 879
- PDF下载数: 128
- 施引文献: 0