AgNO3暴露对红车轴草光合作用的影响
Effects of AgNO3 Exposure on Photosynthesis of Trifolium pratense L.
-
摘要: 从光合相关参数、显/超微结构和基因表达等方面探索了AgNO3对红车轴草光合作用的影响。光合色素含量、光系统Ⅱ最大量子效率(Fv/Fm)、核酮糖-1,5-二磷酸核酮糖羧化酶活性和根长等指标在高浓度AgNO3(588 μmol·L-1)作用下分别降低了22.36%(叶绿素a)、18.6%(叶绿素b)、89.53%(Fv/Fm)、80.13%(核酮糖-1,5-二磷酸核酮糖羧化酶活性)和62.47%(根长)。然而在29 μmol·L-1 AgNO3暴露下,相比于对照组,叶绿素a含量、叶绿素b含量、Fv/Fm、核酮糖-1,5-二磷酸核酮糖羧化酶活性和根长分别增加了32.68%、38.37%、30.63%、79.11%和159.53%(低促高抑,即毒物兴奋效应)。另外,AgNO3明显破坏了红车轴草的细胞结构,呈现为叶绿体的解体与细胞内容物的聚集。转录组分析鉴别到了光合相关基因的差异表达(例如SIGE、HD16和PSBQ),表明红车轴草积极调控基因表达以应对光合抑制。蛋白-蛋白相互作用(protein-protein interaction, PPI)分析表明PETC、PSBO1与PSBO2为核心光合抗逆基因,STRING分析显示,AgNO3显著影响了乙醇酸通路、光呼吸和CO2固定等生物过程。本研究系统探索了AgNO3暴露对红车轴草光合作用的影响机制,可以加深AgNO3对植物毒性作用的理解。Abstract: This research explored the effects of AgNO3 on photosynthesis of red clover in terms of photosynthesis related parameters, microstructure/ultrastructure, and gene expression level. The photosynthetic pigment content, photosystem Ⅱ maximum quantum efficiency (Fv/Fm), rubisco activity, and root length were decreased by 22.36% (chlorophyll a), 18.6% (chlorophyll b), 89.53% (Fv/Fm), 80.13% (rubisco activity), and 62.47% (root length) under high concentration of AgNO3 (588 μmol·L-1), respectively. However, AgNO3 exposure at 29 μmol·L-1, compared to the controls, significantly increased chlorophyll a content, chlorophyll b content, Fv/Fm, rubisco activity, and root length up to 32.68%, 38.37%, 30.63%, 79.11%, and 159.53%, respectively (i.e., hormesis effect). In addition, AgNO3 exposure significantly damaged the cell structure of red clover, such as the disintegration of chloroplasts and aggregation of intracellular substances. Transcriptome analysis identified the differential expression of several photosynthesis related genes, such as SIGE, HD16, and PSBQ, indicating that red clover actively regulated gene expression to cope with photosynthesis inhibition. Finally, protein-protein interaction (PPI) was carried out, and PETC, PSBO1 and PSBO2 were identified as core photosynthetic stress resistance genes. STRING analysis verified the affected biological processes such as glycolic acid pathway, photorespiration, and CO2 fixation. This study systematically explored the impact mechanism of AgNO3 exposure on red clover photosynthesis, which can provide insights on the toxicity mechanisms of AgNO3 on plants.
-
Key words:
- AgNO3 /
- red clover /
- photosynthesis /
- subcellular structure /
- gene regulation
-
-
Ma C X, Chhikara S, Minocha R, et al. Reduced silver nanoparticle phytotoxicity in Crambe abyssinica with enhanced glutathione production by overexpressing bacterial γ-glutamylcysteine synthase [J]. Environmental Science & Technology, 2015, 49(16): 10117-10126 Yuan L, Richardson C J, Ho M, et al. Stress responses of aquatic plants to silver nanoparticles [J]. Environmental Science & Technology, 2018, 52(5): 2558-2565 Leonardo T, Farhi E, Pouget S, et al. Silver accumulation in the green microalga Coccomyxa actinabiotis: Toxicity, in situ speciation, and localization investigated using synchrotron XAS, XRD, and TEM [J]. Environmental Science & Technology, 2016, 50(1): 359-367 俞幼萍, 商成杰. 银纤维制备及在防辐射纺织品中的应用[J]. 针织工业, 2018(1): 27-31 Yu Y P, Shang C J. Preparation of silver fiber and its application in radiation-proof textiles [J]. Knitting Industries, 2018 (1): 27-31 (in Chinese)
Yasur J, Rani P U. Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology [J]. Environmental Science and Pollution Research, 2013, 20(12): 8636-8648 Wu J, Wang G Y, Vijver M G, et al. Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation [J]. Environmental Pollution, 2020, 261: 114117 Tong X L, Guo N, Dang Z Y, et al. In vivo biosynthesis and spatial distribution of Ag nanoparticles in maize (Zea mays L.) [J]. IET Nanobiotechnology, 2018, 12(7): 987-993 Mo F, Li H B, Li Y H, et al. Exploration of defense and tolerance mechanisms in dominant species of mining area - Trifolium pratense L. upon exposure to silver [J]. The Science of the Total Environment, 2022, 811: 151380 Guo H Y, Han F, Shang H P, et al. New insight into naturally formed nanosilver particles: Role of plant root exudates [J]. Environmental Science: Nano, 2021, 8(6): 1580-1592 Yin L Y, Colman B P, McGill B M, et al. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants [J]. PLoS One, 2012, 7(10): e47674 Homaee M B, Ehsanpour A A. Silver nanoparticles and silver ions: Oxidative stress responses and toxicity in potato (Solanum tuberosum L) grown in vitro [J]. Horticulture, Environment, and Biotechnology, 2016, 57(6): 544-553 Ghorbanpour M, Hatami M. Changes in growth, antioxidant defense system and major essential oils constituents of Pelargonium graveolens plant exposed to nano-scale silver and thidiazuron [J]. Indian Journal of Plant Physiology, 2015, 20(2): 116-123 Shahid M, Niazi N K, Rinklebe J, et al. Trace elements-induced phytohormesis: A critical review and mechanistic interpretation [J]. Critical Reviews in Environmental Science and Technology, 2020, 50(19): 1984-2015 Sun J Z, Wang L K, Li S, et al. Toxicity of silver nanoparticles to Arabidopsis: Inhibition of root gravitropism by interfering with auxin pathway [J]. Environmental Toxicology and Chemistry, 2017, 36(10): 2773-2780 Zhang H L, Du W C, Peralta-Videa J R, et al. Metabolomics reveals how cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress [J]. Environmental Science & Technology, 2018, 52(14): 8016-8026 Malone L C, Mourtzinis S, Gaska J M, et al. Cover crops in a Wisconsin annual cropping system: Feasibility and yield effects [J]. Agronomy Journal, 2022, 114(2): 1052-1067 Tahir M, Li C H, Zeng T R, et al. Mixture composition influenced the biomass yield and nutritional quality of legume-grass pastures [J]. Agronomy, 2022, 12(6): 1449 Ke M J, Qu Q, Peijnenburg W J G M, et al. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways [J]. Science of the Total Environment, 2018, 644: 1070-1079 Zhao Z L, Xu L M, Wang Y, et al. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii: Photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis [J]. Environmental Science and Pollution Research International, 2021, 28(12): 15032-15042 Shabnam N, Pardha-Saradhi P. Floating and submerged leaves of Potamogeton nodosus exhibit distinct variation in the antioxidant system as an ecophysiological adaptive strategy [J]. Functional Plant Biology, 2016, 43(4): 346-355 Tarrahi R, Khataee A, Movafeghi A, et al. Toxicological implications of selenium nanoparticles with different coatings along with Se4+ on Lemna minor [J]. Chemosphere, 2017, 181: 655-665 Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nature Biotechnology, 2011, 29(7): 644-652 Fu L M, Niu B F, Zhu Z W, et al. CD-HIT: Accelerated for clustering the next-generation sequencing data [J]. Bioinformatics, 2012, 28(23): 3150-3152 Legocka J, Sobieszczuk-Nowicka E. Calcium variously mediates the effect of cytokinin on chlorophyll and LHCPⅡ accumulation during greening in barley leaves and cucumber cotyledons [J]. Acta Biologica Cracoviensia Series Botanica, 2015, 56(2): 27-34 Diaz-Vivancos P, Faize M, Barba-Espin G, et al. Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums [J]. Plant Biotechnology Journal, 2013, 11(8): 976-985 冯甜华. 叶绿素铜钠盐研究[J]. 食品安全导刊, 2015(32): 72 Feng T H. Study on sodium copper chlorophyllin [J]. China Food Safety Magazine, 2015(32 ): 72 (in Chinese)
do Nascimento J L, de Almeida A A F, Barroso J P, et al. Physiological, ultrastructural, biochemical and molecular responses of young cocoa plants to the toxicity of Cr (Ⅲ) in soil [J]. Ecotoxicology and Environmental Safety, 2018, 159: 272-283 Zheng S M, Zhou Q X, Chen C H, et al. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris [J]. The Science of the Total Environment, 2019, 660: 1182-1190 Jiang H S, Li M, Chang F Y, et al. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza [J]. Environmental Toxicology and Chemistry, 2012, 31(8): 1880-1886 Mirmoeini T, Pishkar L, Kahrizi D, et al. Phytotoxicity of green synthesized silver nanoparticles on Camelina sativa L. [J]. Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 2021, 27(2): 417-427 Varga M, Horvatić J, Barišić L, et al. Physiological and biochemical effect of silver on the aquatic plant Lemna gibba L.: Evaluation of commercially available product containing colloidal silver [J]. Aquatic Toxicology, 2019, 207: 52-62 Du J, Tang J H, Xu S D, et al. A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms [J]. Regulatory Toxicology and Pharmacology, 2018, 98: 231-239 王灵哲, 史彦江, 宋锋惠, 等. 不同施肥处理对平欧杂种榛光合日变化及产量的影响[J]. 新疆农业科学, 2018, 55(8): 1495-1504 Wang L Z, Shi Y J, Song F H, et al. Effects of different fertilization treatments on the diurnal variation of photosynthesis and yield of hybrid of hazelnut [J]. Xinjiang Agricultural Sciences, 2018, 55(8): 1495-1504 (in Chinese)
李丹丹, 陈静波, 宗俊勤, 等. 施氮对'Tifton85’狗牙根光合特性的影响[J]. 草业科学, 2017, 34(3): 472-478 Li D D, Chen J B, Zong J Q, et al. Effects of nitrogen on photosynthetic characteristics of 'Tifton85’ bermudagrass [J]. Pratacultural Science, 2017, 34(3): 472-478 (in Chinese)
Calabrese E J. Hormesis: Why it is important to toxicology and toxicologists [J]. Environmental Toxicology and Chemistry, 2008, 27(7): 1451-1474 Li X X, Ke M J, Zhang M, et al. The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: Growth, photosynthesis and antioxidant system [J]. Environmental Pollution, 2018, 232: 212-219 Liu Y, Wang X N, Wang J, et al. Graphene oxide attenuates the cytotoxicity and mutagenicity of PCB 52 via activation of genuine autophagy [J]. Environmental Science & Technology, 2016, 50(6): 3154-3164 Hakkila K, Antal T, Gunnelius L, et al. Group 2 sigma factor mutant ΔsigCDE of the cyanobacterium Synechocystis sp. PCC 6803 reveals functionality of both carotenoids and flavodiiron proteins in photoprotection of photosystem Ⅱ [J]. Plant & Cell Physiology, 2013, 54(11): 1780-1790 Wu J J, Li S Y, Li C, et al. The non-canonical effects of heme oxygenase-1, a classical fighter against oxidative stress [J]. Redox Biology, 2021, 47: 102170 Timm S, Nunes-Nesi A, Pärnik T, et al. A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis [J]. The Plant Cell, 2008, 20(10): 2848-2859 Cousins A B, Walker B J, Pracharoenwattana I, et al. Peroxisomal hydroxypyruvate reductase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release [J]. Photosynthesis Research, 2011, 108(2): 91-100 Liu Y P, Guérard F, Hodges M, et al. Phosphomimetic T335D mutation of hydroxypyruvate reductase 1 modifies cofactor specificity and impacts Arabidopsis growth in air [J]. Plant Physiology, 2020, 183(1): 194-205 梁天柱, 程凤玲, 张晓军, 等. 花生乙醇酸氧化酶基因鉴定及其响应非生物胁迫的表达分析[J]. 花生学报, 2022, 51(3): 13-20 , 27 Liang T Z, Cheng F L, Zhang X J, et al. Identification of glycolate oxidase gene and expression analysis on its responding to abiotic stresses in peanut [J]. Journal of Peanut Science, 2022, 51(3): 13-20, 27 (in Chinese)
Sun C C, Chen S, Jin Y J, et al. Effects of the herbicide imazethapyr on photosynthesis in PGR5- and NDH-deficient Arabidopsis thaliana at the biochemical, transcriptomic, and proteomic levels [J]. Journal of Agricultural and Food Chemistry, 2016, 64(22): 4497-4504 Yuan L Y, Zheng Y S, Nie L B, et al. Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in Wucai (Brassica campestris L.) [J]. BMC Genomics, 2021, 22(1): 687 Subramanyam R, Jolley C, Thangaraj B, et al. Structural and functional changes of PSI-LHCI super complexes of Chlamydomonas reinhardtii cells grown under high salt conditions [J]. Planta, 2010, 231(4): 913-922 Goussi R, Manfredi M, Marengo E, et al. Thylakoid proteome variation of Eutrema salsugineum in response to drought and salinity combined stress [J]. Biochimica et Biophysica Acta Bioenergetics, 2021, 1862(12): 148482 Rova E M, Ewen B M, Fredriksson P O, et al. Photoactivation and photoinhibition are competing in a mutant of Chlamydomonas reinhardtii lacking the 23-kDa extrinsic subunit of photosystem Ⅱ [J]. The Journal of Biological Chemistry, 1996, 271(46): 28918-28924 Chauhan R, Awasthi S, Indoliya Y, et al. Transcriptome and proteome analyses reveal selenium mediated amelioration of arsenic toxicity in rice (Oryza sativa L.) [J]. Journal of Hazardous Materials, 2020, 390: 122122 Lu H X, Cheng J, Wang Z Y, et al. Enhancing photosynthetic characterization and biomass productivity of Nannochloropsis oceanica by nuclear radiation [J]. Frontiers in Energy Research, 2020, 8: 143 Ko S S, Jhong C M, Lin Y J, et al. Blue light mediates chloroplast avoidance and enhances photoprotection of vanilla orchid [J]. International Journal of Molecular Sciences, 2020, 21(21): 8022 Wang S H, Blumwald E. Stress-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated vacuoles [J]. The Plant Cell, 2014, 26(12): 4875-4888 赵晋锋, 王高鸿, 杜艳伟, 等. 谷子磷酸烯醇式丙酮酸羧化酶基因(PEPC)对逆境胁迫的响应[J]. 华北农学报, 2019, 34(4): 67-74 Zhao J F, Wang G H, Du Y W, et al. Response of phosphoenolpyruvate carboxylase (PEPC) gene to abiotic stresses in foxtail millet [J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4): 67-74 (in Chinese)
唐犁, 施教耐. 水分胁迫对露花磷酸烯醇式丙酮酸羧化酶表达水平及特性的影响[J]. 植物生理学报, 1997, 23(2): 192-198 Tang L, Shi J N. The effects of water stress on leaf PEPCases in Mesembryanthemum cordifolium [J]. Acta Photophysiologica Sinica, 1997, 23(2): 192-198 (in Chinese)
-

计量
- 文章访问数: 1083
- HTML全文浏览数: 1083
- PDF下载数: 99
- 施引文献: 0