AgNO3暴露对红车轴草光合作用的影响

于川, 莫凡, 高建政, 崔明, 李海波. AgNO3暴露对红车轴草光合作用的影响[J]. 生态毒理学报, 2023, 18(5): 305-319. doi: 10.7524/AJE.1673-5897.20221021002
引用本文: 于川, 莫凡, 高建政, 崔明, 李海波. AgNO3暴露对红车轴草光合作用的影响[J]. 生态毒理学报, 2023, 18(5): 305-319. doi: 10.7524/AJE.1673-5897.20221021002
Yu Chuan, Mo Fan, Gao Jianzheng, Cui Ming, Li Haibo. Effects of AgNO3 Exposure on Photosynthesis of Trifolium pratense L.[J]. Asian journal of ecotoxicology, 2023, 18(5): 305-319. doi: 10.7524/AJE.1673-5897.20221021002
Citation: Yu Chuan, Mo Fan, Gao Jianzheng, Cui Ming, Li Haibo. Effects of AgNO3 Exposure on Photosynthesis of Trifolium pratense L.[J]. Asian journal of ecotoxicology, 2023, 18(5): 305-319. doi: 10.7524/AJE.1673-5897.20221021002

AgNO3暴露对红车轴草光合作用的影响

    作者简介: 于川(1988-),男,工程师,研究方向为辐射防护、监测和管理,E-mail:1954731972@qq.com
    通讯作者: 崔明,E-mail:402163339@qq.com;  李海波,E-mail:lihaibo@mail.neu.edu.cn
  • 基金项目:

    天津市生态环境局2019年引滦流域监督管理项目(TGPC-2019-D-0409)

  • 中图分类号: X171.5

Effects of AgNO3 Exposure on Photosynthesis of Trifolium pratense L.

    Corresponding authors: Cui Ming ;  Li Haibo
  • Fund Project:
  • 摘要: 从光合相关参数、显/超微结构和基因表达等方面探索了AgNO3对红车轴草光合作用的影响。光合色素含量、光系统Ⅱ最大量子效率(Fv/Fm)、核酮糖-1,5-二磷酸核酮糖羧化酶活性和根长等指标在高浓度AgNO3(588 μmol·L-1)作用下分别降低了22.36%(叶绿素a)、18.6%(叶绿素b)、89.53%(Fv/Fm)、80.13%(核酮糖-1,5-二磷酸核酮糖羧化酶活性)和62.47%(根长)。然而在29 μmol·L-1 AgNO3暴露下,相比于对照组,叶绿素a含量、叶绿素b含量、Fv/Fm、核酮糖-1,5-二磷酸核酮糖羧化酶活性和根长分别增加了32.68%、38.37%、30.63%、79.11%和159.53%(低促高抑,即毒物兴奋效应)。另外,AgNO3明显破坏了红车轴草的细胞结构,呈现为叶绿体的解体与细胞内容物的聚集。转录组分析鉴别到了光合相关基因的差异表达(例如SIGEHD16PSBQ),表明红车轴草积极调控基因表达以应对光合抑制。蛋白-蛋白相互作用(protein-protein interaction, PPI)分析表明PETCPSBO1PSBO2为核心光合抗逆基因,STRING分析显示,AgNO3显著影响了乙醇酸通路、光呼吸和CO2固定等生物过程。本研究系统探索了AgNO3暴露对红车轴草光合作用的影响机制,可以加深AgNO3对植物毒性作用的理解。
  • 加载中
  • Ma C X, Chhikara S, Minocha R, et al. Reduced silver nanoparticle phytotoxicity in Crambe abyssinica with enhanced glutathione production by overexpressing bacterial γ-glutamylcysteine synthase [J]. Environmental Science & Technology, 2015, 49(16): 10117-10126
    Yuan L, Richardson C J, Ho M, et al. Stress responses of aquatic plants to silver nanoparticles [J]. Environmental Science & Technology, 2018, 52(5): 2558-2565
    Leonardo T, Farhi E, Pouget S, et al. Silver accumulation in the green microalga Coccomyxa actinabiotis: Toxicity, in situ speciation, and localization investigated using synchrotron XAS, XRD, and TEM [J]. Environmental Science & Technology, 2016, 50(1): 359-367
    俞幼萍, 商成杰. 银纤维制备及在防辐射纺织品中的应用[J]. 针织工业, 2018(1): 27-31 Yu Y P, Shang C J. Preparation of silver fiber and its application in radiation-proof textiles [J]. Knitting Industries, 2018

    (1): 27-31 (in Chinese)

    Yasur J, Rani P U. Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology [J]. Environmental Science and Pollution Research, 2013, 20(12): 8636-8648
    Wu J, Wang G Y, Vijver M G, et al. Foliar versus root exposure of AgNPs to lettuce: Phytotoxicity, antioxidant responses and internal translocation [J]. Environmental Pollution, 2020, 261: 114117
    Tong X L, Guo N, Dang Z Y, et al. In vivo biosynthesis and spatial distribution of Ag nanoparticles in maize (Zea mays L.) [J]. IET Nanobiotechnology, 2018, 12(7): 987-993
    Mo F, Li H B, Li Y H, et al. Exploration of defense and tolerance mechanisms in dominant species of mining area - Trifolium pratense L. upon exposure to silver [J]. The Science of the Total Environment, 2022, 811: 151380
    Guo H Y, Han F, Shang H P, et al. New insight into naturally formed nanosilver particles: Role of plant root exudates [J]. Environmental Science: Nano, 2021, 8(6): 1580-1592
    Yin L Y, Colman B P, McGill B M, et al. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants [J]. PLoS One, 2012, 7(10): e47674
    Homaee M B, Ehsanpour A A. Silver nanoparticles and silver ions: Oxidative stress responses and toxicity in potato (Solanum tuberosum L) grown in vitro [J]. Horticulture, Environment, and Biotechnology, 2016, 57(6): 544-553
    Ghorbanpour M, Hatami M. Changes in growth, antioxidant defense system and major essential oils constituents of Pelargonium graveolens plant exposed to nano-scale silver and thidiazuron [J]. Indian Journal of Plant Physiology, 2015, 20(2): 116-123
    Shahid M, Niazi N K, Rinklebe J, et al. Trace elements-induced phytohormesis: A critical review and mechanistic interpretation [J]. Critical Reviews in Environmental Science and Technology, 2020, 50(19): 1984-2015
    Sun J Z, Wang L K, Li S, et al. Toxicity of silver nanoparticles to Arabidopsis: Inhibition of root gravitropism by interfering with auxin pathway [J]. Environmental Toxicology and Chemistry, 2017, 36(10): 2773-2780
    Zhang H L, Du W C, Peralta-Videa J R, et al. Metabolomics reveals how cucumber (Cucumis sativus) reprograms metabolites to cope with silver ions and silver nanoparticle-induced oxidative stress [J]. Environmental Science & Technology, 2018, 52(14): 8016-8026
    Malone L C, Mourtzinis S, Gaska J M, et al. Cover crops in a Wisconsin annual cropping system: Feasibility and yield effects [J]. Agronomy Journal, 2022, 114(2): 1052-1067
    Tahir M, Li C H, Zeng T R, et al. Mixture composition influenced the biomass yield and nutritional quality of legume-grass pastures [J]. Agronomy, 2022, 12(6): 1449
    Ke M J, Qu Q, Peijnenburg W J G M, et al. Phytotoxic effects of silver nanoparticles and silver ions to Arabidopsis thaliana as revealed by analysis of molecular responses and of metabolic pathways [J]. Science of the Total Environment, 2018, 644: 1070-1079
    Zhao Z L, Xu L M, Wang Y, et al. Toxicity mechanism of silver nanoparticles to Chlamydomonas reinhardtii: Photosynthesis, oxidative stress, membrane permeability, and ultrastructure analysis [J]. Environmental Science and Pollution Research International, 2021, 28(12): 15032-15042
    Shabnam N, Pardha-Saradhi P. Floating and submerged leaves of Potamogeton nodosus exhibit distinct variation in the antioxidant system as an ecophysiological adaptive strategy [J]. Functional Plant Biology, 2016, 43(4): 346-355
    Tarrahi R, Khataee A, Movafeghi A, et al. Toxicological implications of selenium nanoparticles with different coatings along with Se4+ on Lemna minor [J]. Chemosphere, 2017, 181: 655-665
    Grabherr M G, Haas B J, Yassour M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome [J]. Nature Biotechnology, 2011, 29(7): 644-652
    Fu L M, Niu B F, Zhu Z W, et al. CD-HIT: Accelerated for clustering the next-generation sequencing data [J]. Bioinformatics, 2012, 28(23): 3150-3152
    Legocka J, Sobieszczuk-Nowicka E. Calcium variously mediates the effect of cytokinin on chlorophyll and LHCPⅡ accumulation during greening in barley leaves and cucumber cotyledons [J]. Acta Biologica Cracoviensia Series Botanica, 2015, 56(2): 27-34
    Diaz-Vivancos P, Faize M, Barba-Espin G, et al. Ectopic expression of cytosolic superoxide dismutase and ascorbate peroxidase leads to salt stress tolerance in transgenic plums [J]. Plant Biotechnology Journal, 2013, 11(8): 976-985
    冯甜华. 叶绿素铜钠盐研究[J]. 食品安全导刊, 2015(32): 72 Feng T H. Study on sodium copper chlorophyllin [J]. China Food Safety Magazine, 2015(32

    ): 72 (in Chinese)

    do Nascimento J L, de Almeida A A F, Barroso J P, et al. Physiological, ultrastructural, biochemical and molecular responses of young cocoa plants to the toxicity of Cr (Ⅲ) in soil [J]. Ecotoxicology and Environmental Safety, 2018, 159: 272-283
    Zheng S M, Zhou Q X, Chen C H, et al. Role of extracellular polymeric substances on the behavior and toxicity of silver nanoparticles and ions to green algae Chlorella vulgaris [J]. The Science of the Total Environment, 2019, 660: 1182-1190
    Jiang H S, Li M, Chang F Y, et al. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza [J]. Environmental Toxicology and Chemistry, 2012, 31(8): 1880-1886
    Mirmoeini T, Pishkar L, Kahrizi D, et al. Phytotoxicity of green synthesized silver nanoparticles on Camelina sativa L. [J]. Physiology and Molecular Biology of Plants: An International Journal of Functional Plant Biology, 2021, 27(2): 417-427
    Varga M, Horvatić J, Barišić L, et al. Physiological and biochemical effect of silver on the aquatic plant Lemna gibba L.: Evaluation of commercially available product containing colloidal silver [J]. Aquatic Toxicology, 2019, 207: 52-62
    Du J, Tang J H, Xu S D, et al. A review on silver nanoparticles-induced ecotoxicity and the underlying toxicity mechanisms [J]. Regulatory Toxicology and Pharmacology, 2018, 98: 231-239
    王灵哲, 史彦江, 宋锋惠, 等. 不同施肥处理对平欧杂种榛光合日变化及产量的影响[J]. 新疆农业科学, 2018, 55(8): 1495-1504

    Wang L Z, Shi Y J, Song F H, et al. Effects of different fertilization treatments on the diurnal variation of photosynthesis and yield of hybrid of hazelnut [J]. Xinjiang Agricultural Sciences, 2018, 55(8): 1495-1504 (in Chinese)

    李丹丹, 陈静波, 宗俊勤, 等. 施氮对'Tifton85’狗牙根光合特性的影响[J]. 草业科学, 2017, 34(3): 472-478

    Li D D, Chen J B, Zong J Q, et al. Effects of nitrogen on photosynthetic characteristics of 'Tifton85’ bermudagrass [J]. Pratacultural Science, 2017, 34(3): 472-478 (in Chinese)

    Calabrese E J. Hormesis: Why it is important to toxicology and toxicologists [J]. Environmental Toxicology and Chemistry, 2008, 27(7): 1451-1474
    Li X X, Ke M J, Zhang M, et al. The interactive effects of diclofop-methyl and silver nanoparticles on Arabidopsis thaliana: Growth, photosynthesis and antioxidant system [J]. Environmental Pollution, 2018, 232: 212-219
    Liu Y, Wang X N, Wang J, et al. Graphene oxide attenuates the cytotoxicity and mutagenicity of PCB 52 via activation of genuine autophagy [J]. Environmental Science & Technology, 2016, 50(6): 3154-3164
    Hakkila K, Antal T, Gunnelius L, et al. Group 2 sigma factor mutant ΔsigCDE of the cyanobacterium Synechocystis sp. PCC 6803 reveals functionality of both carotenoids and flavodiiron proteins in photoprotection of photosystem Ⅱ [J]. Plant & Cell Physiology, 2013, 54(11): 1780-1790
    Wu J J, Li S Y, Li C, et al. The non-canonical effects of heme oxygenase-1, a classical fighter against oxidative stress [J]. Redox Biology, 2021, 47: 102170
    Timm S, Nunes-Nesi A, Pärnik T, et al. A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis [J]. The Plant Cell, 2008, 20(10): 2848-2859
    Cousins A B, Walker B J, Pracharoenwattana I, et al. Peroxisomal hydroxypyruvate reductase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release [J]. Photosynthesis Research, 2011, 108(2): 91-100
    Liu Y P, Guérard F, Hodges M, et al. Phosphomimetic T335D mutation of hydroxypyruvate reductase 1 modifies cofactor specificity and impacts Arabidopsis growth in air [J]. Plant Physiology, 2020, 183(1): 194-205
    梁天柱, 程凤玲, 张晓军, 等. 花生乙醇酸氧化酶基因鉴定及其响应非生物胁迫的表达分析[J]. 花生学报, 2022, 51(3): 13-20

    , 27 Liang T Z, Cheng F L, Zhang X J, et al. Identification of glycolate oxidase gene and expression analysis on its responding to abiotic stresses in peanut [J]. Journal of Peanut Science, 2022, 51(3): 13-20, 27 (in Chinese)

    Sun C C, Chen S, Jin Y J, et al. Effects of the herbicide imazethapyr on photosynthesis in PGR5- and NDH-deficient Arabidopsis thaliana at the biochemical, transcriptomic, and proteomic levels [J]. Journal of Agricultural and Food Chemistry, 2016, 64(22): 4497-4504
    Yuan L Y, Zheng Y S, Nie L B, et al. Transcriptional profiling reveals changes in gene regulation and signaling transduction pathways during temperature stress in Wucai (Brassica campestris L.) [J]. BMC Genomics, 2021, 22(1): 687
    Subramanyam R, Jolley C, Thangaraj B, et al. Structural and functional changes of PSI-LHCI super complexes of Chlamydomonas reinhardtii cells grown under high salt conditions [J]. Planta, 2010, 231(4): 913-922
    Goussi R, Manfredi M, Marengo E, et al. Thylakoid proteome variation of Eutrema salsugineum in response to drought and salinity combined stress [J]. Biochimica et Biophysica Acta Bioenergetics, 2021, 1862(12): 148482
    Rova E M, Ewen B M, Fredriksson P O, et al. Photoactivation and photoinhibition are competing in a mutant of Chlamydomonas reinhardtii lacking the 23-kDa extrinsic subunit of photosystem Ⅱ [J]. The Journal of Biological Chemistry, 1996, 271(46): 28918-28924
    Chauhan R, Awasthi S, Indoliya Y, et al. Transcriptome and proteome analyses reveal selenium mediated amelioration of arsenic toxicity in rice (Oryza sativa L.) [J]. Journal of Hazardous Materials, 2020, 390: 122122
    Lu H X, Cheng J, Wang Z Y, et al. Enhancing photosynthetic characterization and biomass productivity of Nannochloropsis oceanica by nuclear radiation [J]. Frontiers in Energy Research, 2020, 8: 143
    Ko S S, Jhong C M, Lin Y J, et al. Blue light mediates chloroplast avoidance and enhances photoprotection of vanilla orchid [J]. International Journal of Molecular Sciences, 2020, 21(21): 8022
    Wang S H, Blumwald E. Stress-induced chloroplast degradation in Arabidopsis is regulated via a process independent of autophagy and senescence-associated vacuoles [J]. The Plant Cell, 2014, 26(12): 4875-4888
    赵晋锋, 王高鸿, 杜艳伟, 等. 谷子磷酸烯醇式丙酮酸羧化酶基因(PEPC)对逆境胁迫的响应[J]. 华北农学报, 2019, 34(4): 67-74

    Zhao J F, Wang G H, Du Y W, et al. Response of phosphoenolpyruvate carboxylase (PEPC) gene to abiotic stresses in foxtail millet [J]. Acta Agriculturae Boreali-Sinica, 2019, 34(4): 67-74 (in Chinese)

    唐犁, 施教耐. 水分胁迫对露花磷酸烯醇式丙酮酸羧化酶表达水平及特性的影响[J]. 植物生理学报, 1997, 23(2): 192-198

    Tang L, Shi J N. The effects of water stress on leaf PEPCases in Mesembryanthemum cordifolium [J]. Acta Photophysiologica Sinica, 1997, 23(2): 192-198 (in Chinese)

  • 加载中
计量
  • 文章访问数:  1083
  • HTML全文浏览数:  1083
  • PDF下载数:  99
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-10-21
于川, 莫凡, 高建政, 崔明, 李海波. AgNO3暴露对红车轴草光合作用的影响[J]. 生态毒理学报, 2023, 18(5): 305-319. doi: 10.7524/AJE.1673-5897.20221021002
引用本文: 于川, 莫凡, 高建政, 崔明, 李海波. AgNO3暴露对红车轴草光合作用的影响[J]. 生态毒理学报, 2023, 18(5): 305-319. doi: 10.7524/AJE.1673-5897.20221021002
Yu Chuan, Mo Fan, Gao Jianzheng, Cui Ming, Li Haibo. Effects of AgNO3 Exposure on Photosynthesis of Trifolium pratense L.[J]. Asian journal of ecotoxicology, 2023, 18(5): 305-319. doi: 10.7524/AJE.1673-5897.20221021002
Citation: Yu Chuan, Mo Fan, Gao Jianzheng, Cui Ming, Li Haibo. Effects of AgNO3 Exposure on Photosynthesis of Trifolium pratense L.[J]. Asian journal of ecotoxicology, 2023, 18(5): 305-319. doi: 10.7524/AJE.1673-5897.20221021002

AgNO3暴露对红车轴草光合作用的影响

    通讯作者: 崔明,E-mail:402163339@qq.com;  李海波,E-mail:lihaibo@mail.neu.edu.cn
    作者简介: 于川(1988-),男,工程师,研究方向为辐射防护、监测和管理,E-mail:1954731972@qq.com
  • 1. 天津市生态环境监测中心,天津 300191;
  • 2. 南开大学环境科学与工程学院,天津 300350;
  • 3. 东北大学资源与土木工程学院,沈阳 110004
基金项目:

天津市生态环境局2019年引滦流域监督管理项目(TGPC-2019-D-0409)

摘要: 从光合相关参数、显/超微结构和基因表达等方面探索了AgNO3对红车轴草光合作用的影响。光合色素含量、光系统Ⅱ最大量子效率(Fv/Fm)、核酮糖-1,5-二磷酸核酮糖羧化酶活性和根长等指标在高浓度AgNO3(588 μmol·L-1)作用下分别降低了22.36%(叶绿素a)、18.6%(叶绿素b)、89.53%(Fv/Fm)、80.13%(核酮糖-1,5-二磷酸核酮糖羧化酶活性)和62.47%(根长)。然而在29 μmol·L-1 AgNO3暴露下,相比于对照组,叶绿素a含量、叶绿素b含量、Fv/Fm、核酮糖-1,5-二磷酸核酮糖羧化酶活性和根长分别增加了32.68%、38.37%、30.63%、79.11%和159.53%(低促高抑,即毒物兴奋效应)。另外,AgNO3明显破坏了红车轴草的细胞结构,呈现为叶绿体的解体与细胞内容物的聚集。转录组分析鉴别到了光合相关基因的差异表达(例如SIGEHD16PSBQ),表明红车轴草积极调控基因表达以应对光合抑制。蛋白-蛋白相互作用(protein-protein interaction, PPI)分析表明PETCPSBO1PSBO2为核心光合抗逆基因,STRING分析显示,AgNO3显著影响了乙醇酸通路、光呼吸和CO2固定等生物过程。本研究系统探索了AgNO3暴露对红车轴草光合作用的影响机制,可以加深AgNO3对植物毒性作用的理解。

English Abstract

参考文献 (54)

返回顶部

目录

/

返回文章
返回