外加碳源对抗生素诱导大肠杆菌Hormesis效应的调控作用

沈洪艳, 韩冬旭, 杨雷, 李双江, 孙昊宇, 唐量. 外加碳源对抗生素诱导大肠杆菌Hormesis效应的调控作用[J]. 生态毒理学报, 2023, 18(5): 156-164. doi: 10.7524/AJE.1673-5897.20230106002
引用本文: 沈洪艳, 韩冬旭, 杨雷, 李双江, 孙昊宇, 唐量. 外加碳源对抗生素诱导大肠杆菌Hormesis效应的调控作用[J]. 生态毒理学报, 2023, 18(5): 156-164. doi: 10.7524/AJE.1673-5897.20230106002
Shen Hongyan, Han Dongxu, Yang Lei, Li Shuangjiang, Sun Haoyu, Tang Liang. Regulation of External Carbon Source on Antibiotic-induced Hormetic Effect in Escherichia coli[J]. Asian journal of ecotoxicology, 2023, 18(5): 156-164. doi: 10.7524/AJE.1673-5897.20230106002
Citation: Shen Hongyan, Han Dongxu, Yang Lei, Li Shuangjiang, Sun Haoyu, Tang Liang. Regulation of External Carbon Source on Antibiotic-induced Hormetic Effect in Escherichia coli[J]. Asian journal of ecotoxicology, 2023, 18(5): 156-164. doi: 10.7524/AJE.1673-5897.20230106002

外加碳源对抗生素诱导大肠杆菌Hormesis效应的调控作用

    作者简介: 沈洪艳(1971-),女,博士,教授,研究方向为污染物环境行为及效应、环境影响评价及规划,E-mail:1178611805@qq.com
    通讯作者: 孙昊宇,E-mail:sunhaoyu2021@shu.edu.cn; 
  • 基金项目:

    国家自然科学基金(42277270,22006116);河北省化工行业挥发性有机物检测与治理技术创新中心开放课题基金(ZXJJ20210404)

  • 中图分类号: X171.5

Regulation of External Carbon Source on Antibiotic-induced Hormetic Effect in Escherichia coli

    Corresponding author: Sun Haoyu, sunhaoyu2021@shu.edu.cn
  • Fund Project:
  • 摘要: 抗生素对细菌通常表现出“低促高抑”的Hormesis效应,这显著影响了抗生素的生态风险评估。目前关于抗生素诱导细菌Hormesis效应的研究多集中于单一碳源条件,针对多种碳源共存条件的相关研究还十分有限。因此,为进一步探究外加碳源对抗生素诱导细菌Hormesis效应的影响,本文以大肠杆菌(Escherichia coli, E. coli)为受试生物,在外加不同浓度葡萄糖的Mueller-Hinton培养基中测定了盐酸四环素(tetracycline hydrochloride, TCH)和2(5H)-呋喃酮(2(5H)-furanone, 2F)2种抗生素单一及联合暴露对E. coli生长的毒性效应,并分析了外加葡萄糖与抗生素对E. coli生长的交互效应。结果表明,TCH和2F单一及联合暴露均能诱导E. coli产生Hormesis效应,随着外加葡萄糖浓度的升高,TCH、2F和TCH+2F在低浓度下对E. coli生长的促进作用逐渐增强,最大促进率分别由47.66%、9.08%、5.63%增加到158.65%、40.20%、21.30%;在高浓度下对E. coli生长的抑制作用逐渐减弱,EC50值分别从3.17E-05、1.62E-02、3.71E-03 mol·L-1增加到9.24E-05、4.10E-02、1.01E-02 mol·L-1;外加葡萄糖与抗生素对抑制E. coli生长的交互效应总体上呈拮抗作用,且随着外加葡萄糖浓度升高拮抗作用也随之增强,可以看出外加碳源能够降低抗生素的细菌毒性。本研究可为从外界营养条件角度更加全面评估抗生素的Hormesis效应及生态风险提供参考和数据支持。
  • 加载中
  • Grenni P, Ancona V, Barra Caracciolo A. Ecological effects of antibiotics on natural ecosystems: A review [J]. Microchemical Journal, 2018, 136: 25-39
    Calabrese E J, Baldwin L A. Toxicology rethinks its central belief [J]. Nature, 2003, 421(6924): 691-692
    于岩, 游瑞容, 姚志峰, 等. 氯霉素对费氏弧菌0~24h的Hormesis效应及其机制初探[J]. 同济大学学报(自然科学版), 2016, 44(5

    ): 767-772 Yu Y, You R R, Yao Z F, et al. Chloramphenicol hormesis effects about time-dependent and mechanism on Vibrio fischeri [J]. Journal of Tongji University (Natural Science), 2016, 44(5): 767-772 (in Chinese)

    Shen H Y, Liu Y Y, Liu Y N, et al. Hormetic dose-responses for silver antibacterial compounds, quorum sensing inhibitors, and their binary mixtures on bacterial resistance of Escherichia coli [J]. Science of the Total Environment, 2021, 786: 147464
    宋春磊, 方淑霞, 周虹, 等. 抗生素单一及联合暴露对RP4质粒介导的抗性基因水平转移的Hormesis效应研究[J]. 生态毒理学报, 2017, 12(1): 148-154

    Song C L, Fang S X, Zhou H, et al. Hormesis effect of single and combined exposure of antibiotics on antibiotic resistance gene transfer mediated by RP4 plasmid [J]. Asian Journal of Ecotoxicology, 2017, 12(1): 148-154 (in Chinese)

    Tang L A, Zhou Y, Zhang Y L, et al. The role of energy source or substrate in microbial hormesis [J]. Current Opinion in Toxicology, 2022, 29: 10-18
    Towbin B D, Korem Y, Bren A, et al. Optimality and sub-optimality in a bacterial growth law [J]. Nature Communications, 2017, 8: 14123
    Pacciani-Mori L,Giometto A, Suweis S, et al. Dynamic metabolic adaptation can promote species coexistence in competitive microbial communities [J]. PLoS Computational Biology, 2020, 16(5): e1007896
    Saitanis C J, Agathokleous E. Stress response and population dynamics: Is Allee effect hormesis? [J]. The Science of the Total Environment, 2019, 682: 623-628
    Heo J M, Kim H J, Lee S J. Efficient anaerobic consumption of D-xylose byE. coli BL21(DE3) via xylR adaptive mutation [J]. BMC Microbiology, 2021, 21(1): 332
    Sauvage S, Gaviard C, Tahrioui A, et al. Impact of carbon source supplementations on Pseudomonas aeruginosa physiology [J]. Journal of Proteome Research, 2022, 21(6): 1392-1407
    Gurevitch J, Morrow L L, Wallace A, et al. A meta-analysis of competition in field experiments [J]. The American Naturalist, 1992, 140(4): 539-572
    Crain C M, Kroeker K, Halpern B S. Interactive and cumulative effects of multiple human stressors in marine systems [J]. Ecology Letters, 2008, 11(12): 1304-1315
    Zhou L Y, Zhou X H, Shao J J, et al. Interactive effects of global change factors on soil respiration and its components: A meta-analysis [J]. Global Change Biology, 2016, 22(9): 3157-3169
    Deng Z Q, Lin Z F, Zou X M, et al. Model of hormesis and its toxicity mechanism based on quorum sensing: A case study on the toxicity of sulfonamides to Photobacterium phosphoreum [J]. Environmental Science & Technology, 2012, 46(14): 7746-7754
    Bureš M S,Cvetnić M, Miloloža M, et al. Modeling the toxicity of pollutants mixtures for risk assessment: A review [J]. Environmental Chemistry Letters, 2021, 19(2): 1629-1655
    刘树深, 刘玲, 陈浮. 浓度加和模型在化学混合物毒性评估中的应用[J]. 化学学报, 2013, 71(10): 1335-1340

    Liu S S, Liu L, Chen F. Application of the concentration addition model in the assessment of chemical mixture toxicity [J]. Acta Chimica Sinica, 2013, 71(10): 1335-1340 (in Chinese)

    Mahadevan R, Edwards J S, Doyle F J. Dynamic flux balance analysis of diauxic growth in Escherichia coli [J]. Biophysical Journal, 2002, 83(3): 1331-1340
    Görke B, Stülke J. Carbon catabolite repression in bacteria: Many ways to make the most out of nutrients [J]. Nature Reviews Microbiology, 2008, 6(8): 613-624
    Enjalbert B, Cocaign-Bousquet M, Portais J C, et al. Acetate exposure determines the diauxic behavior of Escherichia coli during the glucose-acetate transition [J]. Journal of Bacteriology, 2015, 197(19): 3173-3181
    Bren A, Park J O, Towbin B D, et al. Glucose becomes one of the worst carbon sources for E. coli on poor nitrogen sources due to suboptimal levels of cAMP [J]. Scientific Reports, 2016, 6: 24834
    Chubukov V, Sauer U. Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli [J]. Applied and Environmental Microbiology, 2014, 80(9): 2901-2909
    Sun H Y, Zhang X Y, Wang D L, et al. Insights into the role of energy source in hormesis through diauxic growth of bacteria in mixed cultivation systems [J]. Chemosphere, 2020, 261: 127669
    Liu Y, Fang D, Yang K N, et al. Sodium dehydroacetate confers broad antibiotic tolerance by remodeling bacterial metabolism [J]. Journal of Hazardous Materials, 2022, 432: 128645
  • 加载中
计量
  • 文章访问数:  1398
  • HTML全文浏览数:  1398
  • PDF下载数:  114
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-01-06
沈洪艳, 韩冬旭, 杨雷, 李双江, 孙昊宇, 唐量. 外加碳源对抗生素诱导大肠杆菌Hormesis效应的调控作用[J]. 生态毒理学报, 2023, 18(5): 156-164. doi: 10.7524/AJE.1673-5897.20230106002
引用本文: 沈洪艳, 韩冬旭, 杨雷, 李双江, 孙昊宇, 唐量. 外加碳源对抗生素诱导大肠杆菌Hormesis效应的调控作用[J]. 生态毒理学报, 2023, 18(5): 156-164. doi: 10.7524/AJE.1673-5897.20230106002
Shen Hongyan, Han Dongxu, Yang Lei, Li Shuangjiang, Sun Haoyu, Tang Liang. Regulation of External Carbon Source on Antibiotic-induced Hormetic Effect in Escherichia coli[J]. Asian journal of ecotoxicology, 2023, 18(5): 156-164. doi: 10.7524/AJE.1673-5897.20230106002
Citation: Shen Hongyan, Han Dongxu, Yang Lei, Li Shuangjiang, Sun Haoyu, Tang Liang. Regulation of External Carbon Source on Antibiotic-induced Hormetic Effect in Escherichia coli[J]. Asian journal of ecotoxicology, 2023, 18(5): 156-164. doi: 10.7524/AJE.1673-5897.20230106002

外加碳源对抗生素诱导大肠杆菌Hormesis效应的调控作用

    通讯作者: 孙昊宇,E-mail:sunhaoyu2021@shu.edu.cn; 
    作者简介: 沈洪艳(1971-),女,博士,教授,研究方向为污染物环境行为及效应、环境影响评价及规划,E-mail:1178611805@qq.com
  • 1. 河北科技大学环境科学与工程学院,石家庄 050018;
  • 2. 河北省药物分子化学重点实验室,石家庄 050018;
  • 3. 河北化工医药职业技术学院质量检测与管理系,石家庄 050026;
  • 4. 上海大学有机复合污染控制工程教育部重点实验室,上海 200444
基金项目:

国家自然科学基金(42277270,22006116);河北省化工行业挥发性有机物检测与治理技术创新中心开放课题基金(ZXJJ20210404)

摘要: 抗生素对细菌通常表现出“低促高抑”的Hormesis效应,这显著影响了抗生素的生态风险评估。目前关于抗生素诱导细菌Hormesis效应的研究多集中于单一碳源条件,针对多种碳源共存条件的相关研究还十分有限。因此,为进一步探究外加碳源对抗生素诱导细菌Hormesis效应的影响,本文以大肠杆菌(Escherichia coli, E. coli)为受试生物,在外加不同浓度葡萄糖的Mueller-Hinton培养基中测定了盐酸四环素(tetracycline hydrochloride, TCH)和2(5H)-呋喃酮(2(5H)-furanone, 2F)2种抗生素单一及联合暴露对E. coli生长的毒性效应,并分析了外加葡萄糖与抗生素对E. coli生长的交互效应。结果表明,TCH和2F单一及联合暴露均能诱导E. coli产生Hormesis效应,随着外加葡萄糖浓度的升高,TCH、2F和TCH+2F在低浓度下对E. coli生长的促进作用逐渐增强,最大促进率分别由47.66%、9.08%、5.63%增加到158.65%、40.20%、21.30%;在高浓度下对E. coli生长的抑制作用逐渐减弱,EC50值分别从3.17E-05、1.62E-02、3.71E-03 mol·L-1增加到9.24E-05、4.10E-02、1.01E-02 mol·L-1;外加葡萄糖与抗生素对抑制E. coli生长的交互效应总体上呈拮抗作用,且随着外加葡萄糖浓度升高拮抗作用也随之增强,可以看出外加碳源能够降低抗生素的细菌毒性。本研究可为从外界营养条件角度更加全面评估抗生素的Hormesis效应及生态风险提供参考和数据支持。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回