全氟和多氟烷基化合物(PFAS)与活性污泥间的相互作用研究进展

代孟帆, 阎妮. 全氟和多氟烷基化合物(PFAS)与活性污泥间的相互作用研究进展[J]. 生态毒理学报, 2023, 18(4): 87-101. doi: 10.7524/AJE.1673-5897.20230308001
引用本文: 代孟帆, 阎妮. 全氟和多氟烷基化合物(PFAS)与活性污泥间的相互作用研究进展[J]. 生态毒理学报, 2023, 18(4): 87-101. doi: 10.7524/AJE.1673-5897.20230308001
Dai Mengfan, Yan Ni. Interaction Between Per- and Poly-Fluoroalkyl Substances (PFAS) and Activated Sludge: A Review[J]. Asian journal of ecotoxicology, 2023, 18(4): 87-101. doi: 10.7524/AJE.1673-5897.20230308001
Citation: Dai Mengfan, Yan Ni. Interaction Between Per- and Poly-Fluoroalkyl Substances (PFAS) and Activated Sludge: A Review[J]. Asian journal of ecotoxicology, 2023, 18(4): 87-101. doi: 10.7524/AJE.1673-5897.20230308001

全氟和多氟烷基化合物(PFAS)与活性污泥间的相互作用研究进展

    作者简介: 代孟帆(1998-),女,硕士研究生,研究方向为地下水污染控制,E-mail:dmfan98@163.com
    通讯作者: 阎妮,E-mail:yanni@ouc.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(42277052);国家自然科学基金青年科学基金项目(41907161)

  • 中图分类号: X171.5

Interaction Between Per- and Poly-Fluoroalkyl Substances (PFAS) and Activated Sludge: A Review

    Corresponding author: Yan Ni, yanni@ouc.edu.cn
  • Fund Project:
  • 摘要: 全氟和多氟烷基化合物(per- and poly-fluoroalkyl substances, PFAS)是一类被广泛应用于工业和消费品的人造化学物质,近年来已被证明具有生物蓄积性及各种生物毒性。虽然目前PFAS的生产和使用受到了一定的限制,但由于其高度稳定性和长距离迁移性,仍在环境中被大量检出,其中污水处理厂中的污染尤为严重。考虑到污水处理厂内活性污泥对PFAS的去除和PFAS的生物毒性,本文对当前活性污泥与PFAS相互作用的研究进展进行综述。活性污泥主要通过吸附作用去除污水中的PFAS,而生物降解作用对PFAS的去除作用甚微。活性污泥对PFAS吸附能力的强弱与PFAS自身性质和活性污泥的性质密切相关。而大量吸附到活性污泥上的PFAS,会改变活性污泥的性质,甚至改变活性污泥内微生物的群落结构,进而影响其污水处理效果。本文最后对未来的研究进行展望,以期更好地了解活性污泥与PFAS间的相互作用,为客观进行PFAS污染风险评估提供理论支撑。
  • 加载中
  • Buck R C, Franklin J, Berger U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment:Terminology, classification, and origins[J]. Integrated Environmental Assessment and Management, 2011, 7(4):513-541
    Wang Z Y, DeWitt J C, Higgins C P, et al. A never-ending story of per- and polyfluoroalkyl substances (PFASs)?[J]. Environmental Science & Technology, 2017, 51(5):2508-2518
    Dasu K, Xia X Y, Siriwardena D, et al. Concentration profiles of per- and polyfluoroalkyl substances in major sources to the environment[J]. Journal of Environmental Management, 2022, 301:113879
    Brusseau M L, Anderson R H, Guo B. PFAS concentrations in soils:Background levels versus contaminated sites[J]. Science of the Total Environment, 2020, 740:140017
    Johnson G R, Brusseau M L, Carroll K C, et al. Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater[J]. The Science of the Total Environment, 2022, 841:156602
    Sunderland E M, Hu X C, Dassuncao C, et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects[J]. Journal of Exposure Science & Environmental Epidemiology, 2019, 29(2):131-147
    Dickman R A, Aga D S. A review of recent studies on toxicity, sequestration, and degradation of per- and polyfluoroalkyl substances (PFAS)[J]. Journal of Hazardous Materials, 2022, 436:129120
    Steenland K, Winquist A. PFAS and cancer, a scoping review of the epidemiologic evidence[J]. Environmental Research, 2021, 194:110690
    Lee Y J, Jung H W, Kim H Y, et al. Early-life exposure to per- and poly-fluorinated alkyl substances and growth, adiposity, and puberty in children:A systematic review[J]. Frontiers in Endocrinology, 2021, 12:683297
    Gao Y, Luo J J, Zhang Y, et al. Prenatal exposure to per- and polyfluoroalkyl substances and child growth trajectories in the first two years[J]. Environmental Health Perspectives, 2022, 130(3):37006
    United States Environmental Protection Agency (US EPA). Drinking Water Health Advisories for PFAS Fact Sheet for Communities[S]. Washington DC:US EPA, 2022
    Lenka S P, Kah M, Padhye L P. A review of the occurrence, transformation, and removal of poly- and perfluoroalkyl substances (PFAS) in wastewater treatment plants[J]. Water Research, 2021, 199:117187
    Zhou Q, Deng S B, Zhang Q Y, et al. Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated sludge[J]. Chemosphere, 2010, 81(4):453-458
    Zhang C J, Yan H, Li F, et al. Sorption of short- and long-chain perfluoroalkyl surfactants on sewage sludges[J]. Journal of Hazardous Materials, 2013, 260:689-699
    Li Y J, Bräunig J, Angelica G C, et al. Formation and partitioning behaviour of perfluoroalkyl acids (PFAAs) in waste activated sludge during anaerobic digestion[J]. Water Research, 2021, 189:116583
    Ebrahimi F, Lewis A J, Sales C M, et al. Linking PFAS partitioning behavior in sewage solids to the solid characteristics, solution chemistry, and treatment processes[J]. Chemosphere, 2021, 271:129530
    Katsoyiannis A, Samara C. Persistent organic pollutants (POPs) in the conventional activated sludge treatment process:Fate and mass balance[J]. Environmental Research, 2005, 97(3):245-257
    刘玉, 肖本益, 田双超, 等. 活性污泥快速吸附污染物的研究进展[J]. 工业水处理, 2020, 40(12):1-7

    Liu Y, Xiao B Y, Tian S C, et al. Research progress on activated sludge rapid adsorption pollutants[J]. Industrial Water Treatment, 2020, 40(12):1-7(in Chinese)

    Yu X L, Nishimura F, Hidaka T. Impact of long-term perfluorooctanoic acid (PFOA) exposure on activated sludge process[J]. Water, Air, & Soil Pollution, 2018, 229(4):134
    Chiavola A, Di Marcantonio C, Boni M R, et al. Experimental investigation on the perfluorooctanoic and perfluorooctane sulfonic acids fate and behaviour in the activated sludge reactor[J]. Process Safety and Environmental Protection, 2020, 134:406-415
    Chen H B, Zou M, Zhou Y Y, et al. Monitoring the nitrous oxide emissions and biological nutrient removal from wastewater treatment:Impact of perfluorooctanoic acid[J]. Journal of Hazardous Materials, 2021, 402:123469
    Ji J, Peng L, Redina M M, et al. Perfluorooctane sulfonate decreases the performance of a sequencing batch reactor system and changes the sludge microbial community[J]. Chemosphere, 2021, 279:130596
    Tang L Q, Su C Y, Fan C P, et al. Long-term effect of perfluorooctanoic acid on the anammox system based on metagenomics:Performance, sludge characteristic and microbial community dynamic[J]. Bioresource Technology, 2022, 351:127002
    Yang G J, Zhang N, Yang J N, et al. Interaction between perfluorooctanoic acid and aerobic granular sludge[J]. Water Research, 2020, 169:115249
    Seay B A, Dasu K, MacGregor I C, et al. Per- and polyfluoroalkyl substances fate and transport at a wastewater treatment plant with a collocated sewage sludge incinerator[J]. The Science of the Total Environment, 2023, 874:162357
    李敏, 蔡凤珊, 秦瑞欣, 等. 重庆市典型行业废水中16种全氟化合物污染特征[J]. 生态毒理学报, 2021, 16(5):44-58

    Li M, Cai F S, Qin R X, et al. Pollution status of sixteen per- and polyfluoroalkyl substances in wastewater of typical industries in Chongqing City[J]. Asian Journal of Ecotoxicology, 2021, 16(5):44-58(in Chinese)

    Ma R W, Shih K. Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong[J]. Environmental Pollution, 2010, 158(5):1354-1362
    Sun H W, Zhang X Z, Wang L, et al. Perfluoroalkyl compounds in municipal WWTPs in Tianjin, China-Concentrations, distribution and mass flow[J]. Environmental Science and Pollution Research International, 2012, 19(5):1405-1415
    Arvaniti O S, Andersen H R, Thomaidis N S, et al. Sorption of perfluorinated compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment[J]. Chemosphere, 2014, 111:405-411
    刘鑫彤, 尹华, 彭辉, 等. 胞外聚合物对活性污泥吸附去除全氟辛烷磺酸(PFOS)的影响[J]. 环境科学, 2017, 38(8):3435-3441

    Liu X T, Yin H, Peng H, et al. Effect of extracellular polymeric substance (EPS) on the adsorption of perfluorooctane sulfonate (PFOS) onto activated sludge[J]. Environmental Science, 2017, 38(8):3435-3441(in Chinese)

    Yan W W, Qian T T, Zhang L, et al. Interaction of perfluorooctanoic acid with extracellular polymeric substances-Role of protein[J]. Journal of Hazardous Materials, 2021, 401:123381
    Higgins C P, Luthy R G. Sorption of perfluorinated surfactants on sediments[J]. Environmental Science & Technology, 2006, 40(23):7251-7256
    Yin C, Pan C G, Xiao S K, et al. Insights into the effects of salinity on the sorption and desorption of legacy and emerging per-and polyfluoroalkyl substances (PFASs) on marine sediments[J]. Environmental Pollution, 2022, 300:118957
    Li F, Fang X L, Zhou Z M, et al. Adsorption of perfluorinated acids onto soils:Kinetics, isotherms, and influences of soil properties[J]. The Science of the Total Environment, 2019, 649:504-514
    Milinovic J, Lacorte S, Rigol A, et al. Sorption of perfluoroalkyl substances in sewage sludge[J]. Environmental Science and Pollution Research International, 2016, 23(9):8339-8348
    van Glubt S, Brusseau M L, Yan N, et al. Column versus batch methods for measuring PFOS and PFOA sorption to geomedia[J]. Environmental Pollution, 2021, 268(Pt B):115917
    Milinovic J, Lacorte S, Vidal M, et al. Sorption behaviour of perfluoroalkyl substances in soils[J]. The Science of the Total Environment, 2015, 511:63-71
    吕雪艳, 孙媛媛, 于志国, 等. 全氟辛酸在沉积物-水界面污染及吸附迁移行为研究进展[J]. 应用生态学报, 2021, 32(11):4147-4155

    Lyu X Y, Sun Y Y, Yu Z G, et al. Research progress on the pollution, adsorption, and transport of perfluorooctanoic acid (PFOA) at the sediment-water interface[J]. Chinese Journal of Applied Ecology, 2021, 32(11):4147-4155(in Chinese)

    Ochoa-Herrera V, Sierra-Alvarez R. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge[J]. Chemosphere, 2008, 72(10):1588-1593
    Johnson R L, Anschutz A J, Smolen J M, et al. The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces[J]. Journal of Chemical & Engineering Data, 2007, 52(4):1165-1170
    Liao Q, Rong H W, Zhao M H, et al. Interaction between tetracycline and microorganisms during wastewater treatment:A review[J]. The Science of the Total Environment, 2021, 757:143981
    Morgan J W, Forster C F, Evison L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges[J]. Water Research, 1990, 24(6):743-750
    Fitzgerald N J M, Wargenau A, Sorenson C, et al. Partitioning and accumulation of perfluoroalkyl substances in model lipid bilayers and bacteria[J]. Environmental Science & Technology, 2018, 52(18):10433-10440
    Moroi Y, Yano H, Shibata O, et al. Determination of acidity constants of perfluoroalkanoic acids[J]. Bulletin of the Chemical Society of Japan, 2001, 74(4):667-672
    郑蕾, 田禹, 孙德智. pH值对活性污泥胞外聚合物分子结构和表面特征影响研究[J]. 环境科学, 2007, 28(7):1507-1511

    Zheng L, Tian Y, Sun D Z. Effects of pH on the surface characteristics and molecular structure of extracellular polymeric substances from activated sludge[J]. Environmental Science, 2007, 28(7):1507-1511(in Chinese)

    Ou Q, Xu Y H, Li X L, et al. Interactions between activated sludge extracellular polymeric substances and model carrier surfaces in WWTPs:A combination of QCM-D, AFM and XDLVO prediction[J]. Chemosphere, 2020, 253:126720
    Wang F, Shih K, Ma R W, et al. Influence of cations on the partition behavior of perfluoroheptanoate (PFHpA) and perfluorohexanesulfonate (PFHxS) on wastewater sludge[J]. Chemosphere, 2015, 131:178-183
    Chen H, Zhang C, Yu Y X, et al. Sorption of perfluorooctane sulfonate (PFOS) on marine sediments[J]. Marine Pollution Bulletin, 2012, 64(5):902-906
    Schröder H F. Determination of fluorinated surfactants and their metabolites in sewage sludge samples by liquid chromatography with mass spectrometry and tandem mass spectrometry after pressurised liquid extraction and separation on fluorine-modified reversed-phase sorbents[J]. Journal of Chromatography A, 2003, 1020(1):131-151
    Kwon B G, Lim H J, Na S H, et al. Biodegradation of perfluorooctanesulfonate (PFOS) as an emerging contaminant[J]. Chemosphere, 2014, 109:221-225
    Huang S, Jaffé P R. Defluorination of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6[J]. Environmental Science & Technology, 2019, 53(19):11410-11419
    Huang S, Sima M, Long Y, et al. Anaerobic degradation of perfluorooctanoic acid (PFOA) in biosolids by Acidimicrobium sp. strain A6[J]. Journal of Hazardous Materials, 2022, 424(Pt D):127699
    Ye F X, Ye Y F, Li Y. Effect of C/N ratio on extracellular polymeric substances (EPS) and physicochemical properties of activated sludge flocs[J]. Journal of Hazardous Materials, 2011, 188(1-3):37-43
    Liu X T, Yin H, Tang S Y, et al. Effects of single and combined copper/perfluorooctane sulfonate on sequencing batch reactor process and microbial community in activated sludge[J]. Bioresource Technology, 2017, 238:407-415
    Liu G S, Zhang S, Yang K, et al. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli:Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death[J]. Environmental Pollution, 2016, 214:806-815
    Chen C L, Fang Y P, Zhou D D. Selective pressure of PFOA on microbial community:Enrichment of denitrifiers harboring ARGs and the transfer of ferric-electrons[J]. Water Research, 2023, 233:119813
    Yi L B, Chai L Y, Xie Y, et al. Isolation, identification, and degradation performance of a PFOA-degrading strain[J]. Genetics and Molecular Research, 2016, 15(2):15028043
    Ding R, Wu Y, Yang F, et al. Degradation of low-concentration perfluorooctanoic acid via a microbial-based synergistic method:Assessment of the feasibility and functional microorganisms[J]. Journal of Hazardous Materials, 2021, 416:125857
  • 加载中
计量
  • 文章访问数:  2449
  • HTML全文浏览数:  2449
  • PDF下载数:  157
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-03-08
代孟帆, 阎妮. 全氟和多氟烷基化合物(PFAS)与活性污泥间的相互作用研究进展[J]. 生态毒理学报, 2023, 18(4): 87-101. doi: 10.7524/AJE.1673-5897.20230308001
引用本文: 代孟帆, 阎妮. 全氟和多氟烷基化合物(PFAS)与活性污泥间的相互作用研究进展[J]. 生态毒理学报, 2023, 18(4): 87-101. doi: 10.7524/AJE.1673-5897.20230308001
Dai Mengfan, Yan Ni. Interaction Between Per- and Poly-Fluoroalkyl Substances (PFAS) and Activated Sludge: A Review[J]. Asian journal of ecotoxicology, 2023, 18(4): 87-101. doi: 10.7524/AJE.1673-5897.20230308001
Citation: Dai Mengfan, Yan Ni. Interaction Between Per- and Poly-Fluoroalkyl Substances (PFAS) and Activated Sludge: A Review[J]. Asian journal of ecotoxicology, 2023, 18(4): 87-101. doi: 10.7524/AJE.1673-5897.20230308001

全氟和多氟烷基化合物(PFAS)与活性污泥间的相互作用研究进展

    通讯作者: 阎妮,E-mail:yanni@ouc.edu.cn
    作者简介: 代孟帆(1998-),女,硕士研究生,研究方向为地下水污染控制,E-mail:dmfan98@163.com
  • 1. 中国海洋大学环境科学与工程学院, 海洋环境科学与生态教育部重点实验室, 青岛 266100;
  • 2. 中国海洋大学山东省海洋环境与地质工程重点实验室, 青岛 266100
基金项目:

国家自然科学基金面上项目(42277052);国家自然科学基金青年科学基金项目(41907161)

摘要: 全氟和多氟烷基化合物(per- and poly-fluoroalkyl substances, PFAS)是一类被广泛应用于工业和消费品的人造化学物质,近年来已被证明具有生物蓄积性及各种生物毒性。虽然目前PFAS的生产和使用受到了一定的限制,但由于其高度稳定性和长距离迁移性,仍在环境中被大量检出,其中污水处理厂中的污染尤为严重。考虑到污水处理厂内活性污泥对PFAS的去除和PFAS的生物毒性,本文对当前活性污泥与PFAS相互作用的研究进展进行综述。活性污泥主要通过吸附作用去除污水中的PFAS,而生物降解作用对PFAS的去除作用甚微。活性污泥对PFAS吸附能力的强弱与PFAS自身性质和活性污泥的性质密切相关。而大量吸附到活性污泥上的PFAS,会改变活性污泥的性质,甚至改变活性污泥内微生物的群落结构,进而影响其污水处理效果。本文最后对未来的研究进行展望,以期更好地了解活性污泥与PFAS间的相互作用,为客观进行PFAS污染风险评估提供理论支撑。

English Abstract

参考文献 (58)

返回顶部

目录

/

返回文章
返回