土壤中抗生素残留对氮素生物转化的影响

任劲飞, 王召锋, 侯扶江, Saman Bowatte. 土壤中抗生素残留对氮素生物转化的影响[J]. 生态毒理学报, 2023, 18(4): 77-86. doi: 10.7524/AJE.1673-5897.20221115003
引用本文: 任劲飞, 王召锋, 侯扶江, Saman Bowatte. 土壤中抗生素残留对氮素生物转化的影响[J]. 生态毒理学报, 2023, 18(4): 77-86. doi: 10.7524/AJE.1673-5897.20221115003
Ren Jingfei, Wang Zhaofeng, Hou Fujiang, Saman Bowatte. Effects of Antibiotic Residues on Nitrogen Transformations in Soil[J]. Asian journal of ecotoxicology, 2023, 18(4): 77-86. doi: 10.7524/AJE.1673-5897.20221115003
Citation: Ren Jingfei, Wang Zhaofeng, Hou Fujiang, Saman Bowatte. Effects of Antibiotic Residues on Nitrogen Transformations in Soil[J]. Asian journal of ecotoxicology, 2023, 18(4): 77-86. doi: 10.7524/AJE.1673-5897.20221115003

土壤中抗生素残留对氮素生物转化的影响

    作者简介: 任劲飞(1991-),男,博士研究生,研究方向为土壤氮转化,E-mail:renjf14@lzu.edu.cn
    通讯作者: Saman Bowatte,E-mail:samanbowatte@lzu.edu.cn
  • 基金项目:

    国家自然科学基金资助项目(31201821);长江学者和创新团队发展计划项目(IRT-17R50)

  • 中图分类号: X171.5

Effects of Antibiotic Residues on Nitrogen Transformations in Soil

    Corresponding author: Saman Bowatte, samanbowatte@lzu.edu.cn
  • Fund Project:
  • 摘要: 土壤中残留的抗生素会干扰和改变土壤微生物群落组成、结构和功能,进而影响微生物驱动的地球化学循环过程,威胁着土壤生态系统的安全。土壤中不断累积的抗生素对固氮作用、硝化和反硝化作用等氮转化过程都产生了不同程度的影响。本文综述了抗生素对土壤氮转化过程的影响。结果表明,土壤中的抗生素因其浓度、类型以及暴露时间等因素的不确定性,对固氮作用和反硝化作用的影响规律不明确,但抗生素在多数试验浓度下能够抑制硝化作用,在环境浓度下能够促进N2O排放。本文还对今后有关抗生素影响土壤氮转化的研究方向作了分析和展望。
  • 加载中
  • Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China:Source analysis, multimedia modeling, and linkage to bacterial resistance[J]. Environmental Science & Technology, 2015, 49(11):6772-6782
    孙红洋, 姜子楠, 沈昕, 等. 2018年中国兽用抗菌药物使用情况报告[C]//中国畜牧兽医学会兽医药理毒理学分会第十五次学术讨论会论文集. 兰州:中国畜牧兽医学会兽医药理毒理学分会, 2019:22
    Liu X H, Guo X C, Liu Y, et al. A review on removing antibiotics and antibiotic resistance genes from wastewater by constructed wetlands:Performance and microbial response[J]. Environmental Pollution, 2019, 254(Pt A):112996
    卫承芳, 李佳乐, 孙占学, 等. 水-土壤环境中抗生素污染现状及吸附行为研究进展[J]. 生态毒理学报, 2022, 17(3):385-399

    Wei C F, Li J L, Sun Z X, et al. Research progress on antibiotic pollution and adsorption behavior in water-soil environment[J]. Asian Journal of Ecotoxicology, 2022, 17(3):385-399(in Chinese)

    曾悦, 黄红英, 吴华山. 畜禽粪污抗生素对土壤生物学效应的Meta分析[J]. 农业环境科学学报, 2021, 40(5):1043-1050

    Zeng Y, Huang H Y, Wu H S. Meta-analysis was used to analyze the biological effects of livestock manure antibiotics on soil[J]. Journal of Agro-Environment Science, 2021, 40(5):1043-1050(in Chinese)

    Mohamed M A, Ranjard L, Catroux C, et al. Effect of natamycin on the enumeration, genetic structure and composition of bacterial community isolated from soils and soybean rhizosphere[J]. Journal of Microbiological Methods, 2005, 60(1):31-40
    Yang Q X, Zhang J, Zhu K F, et al. Influence of oxytetracycline on the structure and activity of microbial community in wheat rhizosphere soil[J]. Journal of Environmental Sciences (China), 2009, 21(7):954-959
    Kuypers M M M, Marchant H K, Kartal B. The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16(5):263-276
    Roose-Amsaleg C, Laverman A M. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes[J]. Environmental Science and Pollution Research, 2016, 23(5):4000-4012
    Zahran H H. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate[J]. Microbiology and Molecular Biology Reviews, 1999, 63(4):968-989
    李凤霞, 王长军. 土壤氮素转化及相关微生物过程研究[J]. 宁夏农林科技, 2018, 59(4):37-40

    Li F X, Wang C J. Study on soil nitrogen transformation and the related microbial process[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2018, 59(4):37-40(in Chinese)

    王朱珺, 王尚, 刘洋荧, 等. 宏基因组技术在氮循环功能微生物分子检测研究中的应用[J]. 生物技术通报, 2018, 34(1):1-14

    Wang Z J, Wang S, Liu Y Y, et al. The applications of metagenomics in the detection of environmental microbes involving in nitrogen cycle[J]. Biotechnology Bulletin, 2018, 34(1):1-14(in Chinese)

    王湛, 李银坤, 徐志刚, 等. 生物质炭对土壤理化性状及氮素转化影响的研究进展[J]. 土壤, 2019, 51(5):835-842

    Wang Z, Li Y K, Xu Z G, et al. Research progresses in effects of biochar on soil physiochemical properties and nitrogen transformation[J]. Soils, 2019, 51(5):835-842(in Chinese)

    Xu X S, Tian X J, Sun B T, et al. 1T-phase molybdenum sulfide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions[J]. Applied Catalysis B:Environmental, 2020, 272:118984
    Herridge D F, Peoples M B, Boddey R M. Global inputs of biological nitrogen fixation in agricultural systems[J]. Plant and Soil, 2008, 311(1):1-18
    Revellin C, Hartmann A, Solanas S, et al. Long-term exposure of agricultural soil to veterinary antibiotics changes the population structure of symbiotic nitrogen-fixing rhizobacteria occupying nodules of soybeans (Glycine max)[J]. Applied and Environmental Microbiology, 2018, 84(9):e00109-e00118
    Ostermann A, Mortimer P E, Huang R C, et al. Symbiotic nitrogen fixation in soil contaminated with the veterinary antibiotics oxytetracycline and sulfamethazine[J]. Journal of Environmental Quality, 2019, 48(4):1067-1073
    Abera T, Semu E, Debele T, et al. Determination soil rhizobium populations, intrinsic antibiotic resistance, nodulation and seed yield of faba bean and soybean in western Ethiopia[J]. World Journal of Agricultural Sciences, 2015, 11(1/6):311-324
    马驿, 陈杖榴. 恩诺沙星残留对土壤中固氮细菌固氮基因(nifH)多样性的影响[J]. 生态学报, 2010, 30(1):7-14

    Ma Y, Chen Z L. Effects of enrofloxacin on molecular diversity of nitrogenase reductase genes (nifH)[J]. Acta Ecologica Sinica, 2010, 30(1):7-14(in Chinese)

    杨莉莉. 三种抗生素和铜单一及复合污染对土壤微生物群落结构和功能的影响[D]. 泰安:山东农业大学, 2019
    Halling-Sørensen B, Sengeløv G, Tjørnelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria[J]. Archives of Environmental Contamination and Toxicology, 2002, 42(3):263-271
    Zhong L, Wang S, Xu X, et al. Fungi regulate the response of the N2O production process to warming and grazing in a Tibetan grassland[J]. Biogeosciences, 2018, 15(14):4447-4457
    Prosser J I, Nicol G W. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment[J]. Environmental Microbiology, 2008, 10(11):2931-2941
    Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated Archaea[J]. Nature Reviews Microbiology, 2005, 3(6):479-488
    Kotzerke A, Sharma S, Schauss K, et al. Alterations in soil microbial activity and N-transformation processes due to sulfadiazine loads in pig-manure[J]. Environmental Pollution, 2008, 153(2):315-322
    Radl V, Kindler R, Welzl G, et al. Drying and rewetting events change the response pattern of nitrifiers but not of denitrifiers to the application of manure containing antibiotic in soil[J]. Applied Soil Ecology, 2015, 95:99-106
    Toth J D, Feng Y C, Dou Z X. Veterinary antibiotics at environmentally relevant concentrations inhibit soil iron reduction and nitrification[J]. Soil Biology and Biochemistry, 2011, 43(12):2470-2472
    Omirou M, Stephanou C, Anastopoulos I, et al. Differential response of N2O emissions, N2O-producing and N2O-reducing bacteria to varying tetracycline doses in fertilized soil[J]. Environmental Research, 2022, 214:114013
    Rosendahl I, Siemens J, Kindler R, et al. Persistence of the fluoroquinolone antibiotic difloxacin in soil and lacking effects on nitrogen turnover[J]. Journal of Environmental Quality, 2012, 41(4):1275-1283
    Kotzerke A, Fulle M, Sharma S, et al. Alterations in total microbial activity and nitrification rates in soil due to amoxicillin-spiked pig manure[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(1):56-64
    曹晓旭. 镉和土霉素复合污染及其修复措施对土壤硝化过程的影响研究[D]. 泰安:山东农业大学, 2022
    Yang J F, Ying G G, Liu S, et al. Biological degradation and microbial function effect of norfloxacin in a soil under different conditions[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47(4):288-295
    Cui H, Wang S P, Fu J, et al. Influence of ciprofloxacin on microbial community structure and function in soils[J]. Biology and Fertility of Soils, 2014, 50(6):939-947
    Trifonova T, Kosmacheva A, Chesnokova S. Effect of antibiotics on the cellulolytic and nitrification activity of gray forest soil[J]. South of Russia Ecology Development, 2021, 15(4):52-62
    Langbehn R K, Michels C, Soares H M. Tetracyclines lead to ammonium accumulation during nitrification process[J]. Journal of Environmental Science and Health, Part A, 2020, 55(8):1021-1031
    Zumft W G. Cell biology and molecular basis of denitrification[J]. Microbiology and Molecular Biology Reviews, 1997, 61(4):533-616
    Hochstein L I, Tomlinson G A. The enzymes associated with denitrification[J]. Annual Review of Microbiology, 1988, 42:231-261
    Bílková Z, Malá J, Hrich K. Fate and behaviour of veterinary sulphonamides under denitrifying conditions[J]. Science of the Total Environment, 2019, 695:133824
    Roose-Amsaleg C, David V, Alliot F, et al. Synergetic effect of antibiotic mixtures on soil bacterial N2O-reducing communities[J]. Environmental Chemistry Letters, 2021, 19(2):1873-1878
    Conkle J L, White J R. An initial screening of antibiotic effects on microbial respiration in wetland soils[J]. Journal of Environmental Science and Health, Part A, 2012, 47(10):1381-1390
    DeVries S L, Loving M, Li X Q, et al. The effect of ultralow-dose antibiotics exposure on soil nitrate and N2O flux[J]. Scientific Reports, 2015, 5:16818
    Liang D, Robertson G P. Nitrification is a minor source of nitrous oxide (N2O) in an agricultural landscape and declines with increasing management intensity[J]. Global Change Biology, 2021, 27(21):5599-5613
    Chen C, Li Y, Yin G Y, et al. Antibiotics sulfamethoxazole alter nitrous oxide production and pathways in estuarine sediments:Evidenced by the N15-O18 isotopes tracing[J]. Journal of Hazardous Materials, 2022, 437:129281
    Hou L J, Yin G Y, Liu M, et al. Effects of sulfamethazine on denitrification and the associated N2O release in estuarine and coastal sediments[J]. Environmental Science & Technology, 2015, 49(1):326-333
    Lin H, Yuan Q Y, Yu Q G, et al. Plants mitigate nitrous oxide emissions from antibiotic-contaminated agricultural soils[J]. Environmental Science & Technology, 2022, 56(8):4950-4960
    Shan J, Yang P P, Rahman M M, et al. Tetracycline and sulfamethazine alter dissimilatory nitrate reduction processes and increase N2O release in rice fields[J]. Environmental Pollution, 2018, 242(Pt A):788-796
    Wu J, Zhang Y H, Huang M Y, et al. Sulfonamide antibiotics alter gaseous nitrogen emissions in the soil-plant system:A mesocosm experiment and meta-analysis[J]. Science of the Total Environment, 2022, 828:154230
    Keen P L, Patrick D M. Tracking change:A look at the ecological footprint of antibiotics and antimicrobial resistance[J]. Antibiotics, 2013, 2(2):191-205
    Molaei A, Lakzian A, Haghnia G, et al. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil:An incubation study[J]. PLoS One, 2017, 12(7):e0180663
    Alekshun M N, Levy S B. Molecular mechanisms of antibacterial multidrug resistance[J]. Cell, 2007, 128(6):1037-1050
    Drlica K, Zhao X. DNA gyrase, topoisomerase Ⅳ, and the 4-quinolones[J]. Microbiology and Molecular Biology Reviews, 1997, 61(3):377-392
    Chen W, Liu W B, Pan N, et al. Oxytetracycline on functions and structure of soil microbial community[J]. Journal of Soil Science and Plant Nutrition, 2013, 13(4):967-975
    Westergaard K, Müller A K, Christensen S, et al. Effects of tylosin as a disturbance on the soil microbial community[J]. Soil Biology and Biochemistry, 2001, 33(15):2061-2071
    王冉, 刘铁铮, 耿志明, 等. 兽药磺胺二甲嘧啶在土壤中的生态行为[J]. 土壤学报, 2007, 44(2):307-311

    Wang R, Liu T Z, Geng Z M, et al. Ecotoxicology and ecological behavior of sulfamethazine in soil[J]. Acta Pedologica Sinica, 2007, 44(2):307-311(in Chinese)

    陈敏杰, 钱懿宏, 于青燕, 等. 典型四环素类抗生素对土壤微生物及植物生长的影响[J]. 生态毒理学报, 2019, 14(6):276-283

    Chen M J, Qian Y H, Yu Q Y, et al. Effects of typical tetracycline antibiotics on soil microorganisms and plant growth[J]. Asian Journal of Ecotoxicology, 2019, 14(6):276-283(in Chinese)

    Unger I M, Goyne K W, Kennedy A C, et al. Antibiotic effects on microbial community characteristics in soils under conservation management practices[J]. Soil Science Society of America Journal, 2013, 77(1):100-112
    Girardi C, Greve J, Lamshöft M, et al. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities[J]. Journal of Hazardous Materials, 2011, 198:22-30
    王加龙, 刘坚真, 陈杖榴, 等. 恩诺沙星残留对土壤微生物功能的影响[J]. 生态学报, 2005, 25(2):279-282

    Wang J L, Liu J Z, Chen Z L, et al. Effects of enrofloxacin residues on the functions of soil microbes[J]. Acta Ecologica Sinica, 2005, 25(2):279-282(in Chinese)

    刘锋, 应光国, 周启星, 等. 抗生素类药物对土壤微生物呼吸的影响[J]. 环境科学, 2009, 30(5):1280-1285

    Liu F, Ying G G, Zhou Q X, et al. Effects of antimicrobial drugs on soil microbial respiration[J]. Environmental Science, 2009, 30(5):1280-1285(in Chinese)

    Ding G C, Radl V, Schloter-Hai B, et al. Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine[J]. PLoS One, 2014, 9(3):e92958
    Ollivier J, Schacht D, Kindler R, et al. Effects of repeated application of sulfadiazine-contaminated pig manure on the abundance and diversity of ammonia and nitrite oxidizers in the root-rhizosphere complex of pasture plants under field conditions[J]. Frontiers in Microbiology, 2013, 4:22
    Kühne M, Ihnen D, Möller G, et al. Stability of tetracycline in water and liquid manure[J]. Journal of Veterinary Medicine A, Physiology, Pathology, Clinical Medicine, 2000, 47(6):379-384
    Chen H B, Zhou Y F, Hu X Y, et al. Effects of chlortetracycline on biological nutrient removal from wastewater[J]. The Science of the Total Environment, 2019, 647:268-274
    Pulicharla R, Zolfaghari M, Brar S K, et al. Acute impact of chlortetracycline on nitrifying and denitrifying processes[J]. Water Environment Research, 2018, 90(7):604-614
    Zhang X Y, Han H N, Zheng X, et al. Tetracycline-induced effects on the nitrogen transformations in sediments:Roles of adsorption behavior and bacterial activity[J]. Science of the Total Environment, 2019, 695:133811
    Zhu Y J, Wang Y Y, Jiang X X, et al. Microbial community compositional analysis for membrane bioreactor treating antibiotics containing wastewater[J]. Chemical Engineering Journal, 2017, 325:300-309
    Costanzo S D, Murby J, Bates J. Ecosystem response to antibiotics entering the aquatic environment[J]. Marine Pollution Bulletin, 2005, 51(1-4):218-223
    Liu H, Yang Y K, Sun H F, et al. Effect of tetracycline on microbial community structure associated with enhanced biological N&P removal in sequencing batch reactor[J]. Bioresource Technology, 2018, 256:414-420
    Fan N S, Bai Y H, Chen Q Q, et al. Deciphering the toxic effects of antibiotics on denitrification:Process performance, microbial community and antibiotic resistance genes[J]. Journal of Environmental Management, 2020, 262:110375
    Wang J L, Wang S Z. Microbial degradation of sulfamethoxazole in the environment[J]. Applied Microbiology and Biotechnology, 2018, 102(8):3573-3582
    Zhao Y P, Tan Y Y, Guo Y, et al. Interactions of tetracycline with Cd (Ⅱ), Cu (Ⅱ) and Pb (Ⅱ) and their cosorption behavior in soils[J]. Environmental Pollution, 2013, 180:206-213
    Deng Z W, Wang Z C, Zhang P, et al. Effects of divalent copper on microbial community, enzymatic activity and functional genes associated with nitrification and denitrification at tetracycline stress[J]. Enzyme and Microbial Technology, 2019, 126:62-68
    Wang Z C, Xia P H, Gao M C, et al. Long-term effects of combined divalent copper and tetracycline on the performance, microbial activity and community in a sequencing batch reactor[J]. Bioresource Technology, 2018, 249:916-923
    Agathokleous E, Calabrese E J. Hormesis:The dose response for the 21st Century:The future has arrived[J]. Toxicology, 2019, 425:152249
    Calabrese E J, Mattson M P. How does hormesis impact biology, toxicology, and medicine?[J]. NPJ Aging and Mechanisms of Disease, 2017, 3(1):1-8
    Poschenrieder C, Cabot C, Martos S, et al. Do toxic ions induce hormesis in plants?[J]. Plant Science, 2013, 212:15-25
    Kim S A, Lee Y M, Choi J Y, et al. Evolutionarily adapted hormesis-inducing stressors can be a practical solution to mitigate harmful effects of chronic exposure to low dose chemical mixtures[J]. Environmental Pollution, 2018, 233:725-734
    Ollivier J, Kleineidam K, Reichel R, et al. Effect of sulfadiazine-contaminated pig manure on the abundances of genes and transcripts involved in nitrogen transformation in the root-rhizosphere complexes of maize and clover[J]. Applied and Environmental Microbiology, 2010, 76(24):7903-7909
    Wang M, Xie X Y, Wang M Z, et al. The bacterial microbiota in florfenicol contaminated soils:The antibiotic resistome and the nitrogen cycle[J]. Environmental Pollution, 2020, 259:113901
    Zheng Y C, Liu Y, Qu M W, et al. Fate of an antibiotic and its effects on nitrogen transformation functional bacteria in integrated vertical flow constructed wetlands[J]. Chemical Engineering Journal, 2021, 417:129272
  • 加载中
计量
  • 文章访问数:  2321
  • HTML全文浏览数:  2321
  • PDF下载数:  154
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-11-15
任劲飞, 王召锋, 侯扶江, Saman Bowatte. 土壤中抗生素残留对氮素生物转化的影响[J]. 生态毒理学报, 2023, 18(4): 77-86. doi: 10.7524/AJE.1673-5897.20221115003
引用本文: 任劲飞, 王召锋, 侯扶江, Saman Bowatte. 土壤中抗生素残留对氮素生物转化的影响[J]. 生态毒理学报, 2023, 18(4): 77-86. doi: 10.7524/AJE.1673-5897.20221115003
Ren Jingfei, Wang Zhaofeng, Hou Fujiang, Saman Bowatte. Effects of Antibiotic Residues on Nitrogen Transformations in Soil[J]. Asian journal of ecotoxicology, 2023, 18(4): 77-86. doi: 10.7524/AJE.1673-5897.20221115003
Citation: Ren Jingfei, Wang Zhaofeng, Hou Fujiang, Saman Bowatte. Effects of Antibiotic Residues on Nitrogen Transformations in Soil[J]. Asian journal of ecotoxicology, 2023, 18(4): 77-86. doi: 10.7524/AJE.1673-5897.20221115003

土壤中抗生素残留对氮素生物转化的影响

    通讯作者: Saman Bowatte,E-mail:samanbowatte@lzu.edu.cn
    作者简介: 任劲飞(1991-),男,博士研究生,研究方向为土壤氮转化,E-mail:renjf14@lzu.edu.cn
  • 草种创新与草地农业生态系统全国重点实验室/兰州大学草地农业科技学院, 兰州 730020
基金项目:

国家自然科学基金资助项目(31201821);长江学者和创新团队发展计划项目(IRT-17R50)

摘要: 土壤中残留的抗生素会干扰和改变土壤微生物群落组成、结构和功能,进而影响微生物驱动的地球化学循环过程,威胁着土壤生态系统的安全。土壤中不断累积的抗生素对固氮作用、硝化和反硝化作用等氮转化过程都产生了不同程度的影响。本文综述了抗生素对土壤氮转化过程的影响。结果表明,土壤中的抗生素因其浓度、类型以及暴露时间等因素的不确定性,对固氮作用和反硝化作用的影响规律不明确,但抗生素在多数试验浓度下能够抑制硝化作用,在环境浓度下能够促进N2O排放。本文还对今后有关抗生素影响土壤氮转化的研究方向作了分析和展望。

English Abstract

参考文献 (80)

返回顶部

目录

/

返回文章
返回