自主神经功能紊乱化学品的机器学习筛查模型

李瑞香, 徐淑君, 刘一席, 伍天翔, 朱朗辰, 张强强, 傅志强, 陈景文, 李雪花. 自主神经功能紊乱化学品的机器学习筛查模型[J]. 生态毒理学报, 2023, 18(4): 9-21. doi: 10.7524/AJE.1673-5897.20230411003
引用本文: 李瑞香, 徐淑君, 刘一席, 伍天翔, 朱朗辰, 张强强, 傅志强, 陈景文, 李雪花. 自主神经功能紊乱化学品的机器学习筛查模型[J]. 生态毒理学报, 2023, 18(4): 9-21. doi: 10.7524/AJE.1673-5897.20230411003
Li Ruixiang, Xu Shujun, Liu Yixi, Wu Tianxiang, Zhu Langchen, Zhang Qiangqiang, Fu Zhiqiang, Chen Jingwen, Li Xuehua. Machine Learning Screening Model for Chemicals Inducing Autonomic Dysfunction[J]. Asian journal of ecotoxicology, 2023, 18(4): 9-21. doi: 10.7524/AJE.1673-5897.20230411003
Citation: Li Ruixiang, Xu Shujun, Liu Yixi, Wu Tianxiang, Zhu Langchen, Zhang Qiangqiang, Fu Zhiqiang, Chen Jingwen, Li Xuehua. Machine Learning Screening Model for Chemicals Inducing Autonomic Dysfunction[J]. Asian journal of ecotoxicology, 2023, 18(4): 9-21. doi: 10.7524/AJE.1673-5897.20230411003

自主神经功能紊乱化学品的机器学习筛查模型

    作者简介: 李瑞香(1998-),女,硕士研究生,研究方向为健康效应的机器学习建模,E-mail:liruixiang_dut@163.com
    通讯作者: 李雪花,E-mail:lixuehua@dlut.edu.cn
  • 基金项目:

    国家重点研发计划课题(2022YFC3902104);国家自然科学基金资助项目(22176023);中央高校基本科研业务费青年科学家创新团队项目(DUT22QN216)

  • 中图分类号: X171.5

Machine Learning Screening Model for Chemicals Inducing Autonomic Dysfunction

    Corresponding author: Li Xuehua, lixuehua@dlut.edu.cn
  • Fund Project:
  • 摘要: 化学品可以引起继发性自主神经功能紊乱(autonomic dysfunction, AD),对人体健康造成危害。通过动物实验和临床测试手段筛查AD化学品,过程复杂、耗时长且成本高,有必要发展高通量的筛查方法。目前,化学品诱发AD的机制复杂,尚缺乏筛查AD化学品的机器学习模型。本研究基于文献和数据库挖掘,构建了涵盖4种AD临床不良症状(直立性低血压、失禁、尿失禁、肛门失禁)的数据集,包括466种阳性数据,427种阴性数据。基于该数据集,计算ToxPrint毒性指纹,采用5种机器学习算法(决策树、支持向量机、k近邻、随机森林、梯度提升决策树)构建了AD化学品的筛查模型。随机森林模型的分类性能最优,训练集准确率达0.738,验证集准确率达0.737,若考虑模型应用域,当相似性阈值为0.75时,验证集准确率提高至0.752。此外,本研究耦合SHAP(SHapley Additive exPlanations)方法和子结构片段频率分析方法,揭示了诱发AD的16种警示子结构,包括9种键、3种链、3种环和1种基团结构。基于所发展的机器学习筛查模型,拓展了对AD机制的认识和理解,为神经毒性化学品的筛查和评价提供参考。
  • 加载中
  • Cardinali D P. Clinical Implications of the Enlarged Autonomic Nervous System[M]//Autonomic Nervous System. Cham:Springer International Publishing, 2017:287-312
    庄志雄. 靶器官毒理学[M]. 北京:化学工业出版社, 2006:163-171
    赵超英, 姜允申. 神经系统毒理学[M]. 北京:北京大学医学出版社, 2009:91-136
    Jain K K. Drug-induced Disorders of the Autonomic Nervous System[M]//Drug-induced Neurological Disorders. Cham:Springer, 2021:469-479
    Herring N, Kalla M, Paterson D J. The autonomic nervous system and cardiac arrhythmias:Current concepts and emerging therapies[J]. Nature Reviews Cardiology, 2019, 16(12):707-726
    Ehmke H. The mechanotransduction of blood pressure[J]. Science, 2018, 362(6413):398-399
    Shewale S V, Anstadt M P, Horenziak M, et al. Sarin causes autonomic imbalance and cardiomyopathy:An important issue for military and civilian health[J]. Journal of Cardiovascular Pharmacology, 2012, 60(1):76-87
    Nguyen L S, Cooper L T, Kerneis M, et al. Systematic analysis of drug-associated myocarditis reported in the World Health Organization pharmacovigilance database[J]. Nature Communications, 2022, 13(1):25
    Leung J Y T, Barr A M, Procyshyn R M, et al. Cardiovascular side-effects of antipsychotic drugs:The role of the autonomic nervous system[J]. Pharmacology & Therapeutics, 2012, 135(2):113-122
    周宗灿. 毒理学教程[M]. 3版. 北京:北京大学医学出版社, 2006:486-502
    Cheshire W P, Freeman R, Gibbons C H, et al. Electrodiagnostic assessment of the autonomic nervous system:A consensus statement endorsed by the American Autonomic Society, American Academy of Neurology, and the International Federation of Clinical Neurophysiology[J]. Clinical Neurophysiology, 2021, 132(2):666-682
    Freeman R, Wieling W, Axelrod F B, et al. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome[J]. Clinical Autonomic Research, 2011, 21(2):69-72
    邓东阳, 于红霞, 张效伟, 等. 基于毒性效应的非目标化学品鉴别技术进展[J]. 生态毒理学报, 2015, 10(2):13-25

    Deng D Y, Yu H X, Zhang X W, et al. Development and application of nontargeted analysis in effect directed analysis[J]. Asian Journal of Ecotoxicology, 2015, 10(2):13-25(in Chinese)

    Wang Z Y, Walker G W, Muir D C G, et al. Toward a global understanding of chemical pollution:A first comprehensive analysis of national and regional chemical inventories[J]. Environmental Science & Technology, 2020, 54(5):2575-2584
    Johnson A C, Jin X W, Nakada N, et al. Learning from the past and considering the future of chemicals in the environment[J]. Science, 2020, 367(6476):384-387
    Kasahara Y, Yoshida C, Nakanishi K, et al. Alterations in the autonomic nerve activities of prenatal autism model mice treated with valproic acid at different developmental stages[J]. Scientific Reports, 2020, 10:17722
    Pognan F, Beilmann M, Boonen H C M, et al. The evolving role of investigative toxicology in the pharmaceutical industry[J]. Nature Reviews Drug Discovery, 2023, 22(4):317-335
    Zhao X, Sun Y H, Zhang R Q, et al. Machine learning modeling and insights into the structural characteristics of drug-induced neurotoxicity[J]. Journal of Chemical Information and Modeling, 2022, 62(23):6035-6045
    Wang Z Y, Zhao P P, Zhang X X, et al. In silico prediction of chemical respiratory toxicity via machine learning[J]. Computational Toxicology, 2021, 18:100155
    Tang W H, Chen J W, Hong H X. Development of classification models for predicting inhibition of mitochondrial fusion and fission using machine learning methods[J]. Chemosphere, 2021, 273:128567
    Crofton K M, Bassan A, Behl M, et al. Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches[J]. Computational Toxicology, 2022, 22:100223
    Jeong J, Choi J. Artificial intelligence-based toxicity prediction of environmental chemicals:Future directions for chemical management applications[J]. Environmental Science & Technology, 2022, 56(12):7532-7543
    滕跃发, 王晓晴, 李斐, 等. 大数据挖掘和机器学习在毒理学中的应用[J]. 生态毒理学报, 2022, 17(1):93-101

    Teng Y F, Wang X Q, Li F, et al. Application of data mining and machine learning in toxicology[J]. Asian Journal of Ecotoxicology, 2022, 17(1):93-101(in Chinese)

    张家晨, 张良, 庄树林. 分子起始事件在计算毒理学中的研究展望[J]. 环境化学, 2021, 40(9):2629-2632

    Zhang J C, Zhang L, Zhuang S L. Perspective of molecular initiating events in computational toxicology[J]. Environmental Chemistry, 2021, 40(9):2629-2632(in Chinese)

    Garland E M, Robertson D. Autonomic Failure[M]//Encyclopedia of Neuroscience. Amsterdam:Elsevier, 2009:825-832
    Zhang H, Mao J, Qi H Z, et al. Developing novel computational prediction models for assessing chemical-induced neurotoxicity using naïve Bayes classifier technique[J]. Food and Chemical Toxicology, 2020, 143:111513
    Yang C, Tarkhov A, Marusczyk J, et al. New publicly available chemical query language, CSRML, to support chemotype representations for application to data mining and modeling[J]. Journal of Chemical Information and Modeling, 2015, 55(3):510-528
    Nguyen T N, Nakanowatari S, Nhat Tran T P, et al. Learning catalyst design based on bias-free data set for oxidative coupling of methane[J]. ACS Catalysis, 2021, 11(3):1797-1809
    Specht T, Münnemann K, Hasse H, et al. Automated methods for identification and quantification of structural groups from nuclear magnetic resonance spectra using support vector classification[J]. Journal of Chemical Information and Modeling, 2021, 61(1):143-155
    Sarkar N, Gupta R, Keserwani P K, et al. Air Quality Index prediction using an effective hybrid deep learning model[J]. Environmental Pollution, 2022, 315:120404
    Cheng W X, Ng C A. Using machine learning to classify bioactivity for 3486 per- and polyfluoroalkyl substances (PFASs) from the OECD list[J]. Environmental Science & Technology, 2019, 53(23):13970-13980
    Zulfiqar H, Yuan S S, Huang Q L, et al. Identification of cyclin protein using gradient boost decision tree algorithm[J]. Computational and Structural Biotechnology Journal, 2021, 19:4123-4131
    王园宁, 刘会会, 杨先海. 构建有机化合物斑马鱼雌激素干扰效应的二元分类模型[J]. 生态毒理学报, 2019, 14(4):163-169

    Wang Y N, Liu H H, Yang X H. Development of binary classification models for predicting estrogenic activity of organic compounds on zebrafish[J]. Asian Journal of Ecotoxicology, 2019, 14(4):163-169(in Chinese)

    Huang Y, Li X H, Xu S J, et al. Quantitative structure-activity relationship models for predicting inflammatory potential of metal oxide nanoparticles[J]. Environmental Health Perspectives, 2020, 128(6):67010
    Huang Y, Li X H, Cao J Y, et al. Use of dissociation degree in lysosomes to predict metal oxide nanoparticle toxicity in immune cells:Machine learning boosts nano-safety assessment[J]. Environment International, 2022, 164:107258
    陈景文, 全燮. 环境化学[M]. 大连:大连理工大学出版社, 2009:260-289
    Wang Z Y, Chen J W, Hong H X. Applicability domains enhance application of PPARγ agonist classifiers trained by drug-like compounds to environmental chemicals[J]. Chemical Research in Toxicology, 2020, 33(6):1382-1388
    Yang H B, Lou C F, Li W H, et al. Computational approaches to identify structural alerts and their applications in environmental toxicology and drug discovery[J]. Chemical Research in Toxicology, 2020, 33(6):1312-1322
    Lundberg S M, Lee S I. A unified approach to interpreting model predictions[J]. Advances in Neural Information Processing Systems, 2017, 30:4765-4774
    孙露, 陈英杰, 吴曾睿, 等. 有机化合物生物富集因子的计算机预测研究[J]. 生态毒理学报, 2015, 10(2):173-182

    Sun L, Chen Y J, Wu Z R, et al. In silico prediction of chemical bioconcentration factor[J]. Asian Journal of Ecotoxicology, 2015, 10(2):173-182(in Chinese)

    Hochrein J, Klein M S, Zacharias H U, et al. Performance evaluation of algorithms for the classification of metabolic 1H NMR fingerprints[J]. Journal of Proteome Research, 2012, 11(12):6242-6251
    Liu W P, Zhang L R, Bao L J, et al. Accurate classification and prediction of acute myocardial infarction through an ARMD procedure[J]. Journal of Proteome Research, 2023, 22(3):758-767
    Jain S, Norinder U, Escher S E, et al. Combining in vivo data with in silico predictions for modeling hepatic steatosis by using stratified bagging and conformal prediction[J]. Chemical Research in Toxicology, 2021, 34(2):656-668
    Writer J H, Antweiler R C, Ferrer I, et al. In-stream attenuation of neuro-active pharmaceuticals and their metabolites[J]. Environmental Science & Technology, 2013, 47(17):9781-9790
    Mukherjee R K, Kumar V, Roy K. Ecotoxicological QSTR and QSTTR modeling for the prediction of acute oral toxicity of pesticides against multiple avian species[J]. Environmental Science & Technology, 2022, 56(1):335-348
    Liu J, Patlewicz G, Williams A J, et al. Predicting organ toxicity using in vitro bioactivity data and chemical structure[J]. Chemical Research in Toxicology, 2017, 30(11):2046-2059
    Xu T, Ngan D K, Ye L, et al. Predictive models for human organ toxicity based on in vitro bioactivity data and chemical structure[J]. Chemical Research in Toxicology, 2020, 33(3):731-741
  • 加载中
计量
  • 文章访问数:  1706
  • HTML全文浏览数:  1706
  • PDF下载数:  143
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-04-11
李瑞香, 徐淑君, 刘一席, 伍天翔, 朱朗辰, 张强强, 傅志强, 陈景文, 李雪花. 自主神经功能紊乱化学品的机器学习筛查模型[J]. 生态毒理学报, 2023, 18(4): 9-21. doi: 10.7524/AJE.1673-5897.20230411003
引用本文: 李瑞香, 徐淑君, 刘一席, 伍天翔, 朱朗辰, 张强强, 傅志强, 陈景文, 李雪花. 自主神经功能紊乱化学品的机器学习筛查模型[J]. 生态毒理学报, 2023, 18(4): 9-21. doi: 10.7524/AJE.1673-5897.20230411003
Li Ruixiang, Xu Shujun, Liu Yixi, Wu Tianxiang, Zhu Langchen, Zhang Qiangqiang, Fu Zhiqiang, Chen Jingwen, Li Xuehua. Machine Learning Screening Model for Chemicals Inducing Autonomic Dysfunction[J]. Asian journal of ecotoxicology, 2023, 18(4): 9-21. doi: 10.7524/AJE.1673-5897.20230411003
Citation: Li Ruixiang, Xu Shujun, Liu Yixi, Wu Tianxiang, Zhu Langchen, Zhang Qiangqiang, Fu Zhiqiang, Chen Jingwen, Li Xuehua. Machine Learning Screening Model for Chemicals Inducing Autonomic Dysfunction[J]. Asian journal of ecotoxicology, 2023, 18(4): 9-21. doi: 10.7524/AJE.1673-5897.20230411003

自主神经功能紊乱化学品的机器学习筛查模型

    通讯作者: 李雪花,E-mail:lixuehua@dlut.edu.cn
    作者简介: 李瑞香(1998-),女,硕士研究生,研究方向为健康效应的机器学习建模,E-mail:liruixiang_dut@163.com
  • 大连理工大学环境学院, 工业生态与环境工程教育部重点实验室, 大连 116024
基金项目:

国家重点研发计划课题(2022YFC3902104);国家自然科学基金资助项目(22176023);中央高校基本科研业务费青年科学家创新团队项目(DUT22QN216)

摘要: 化学品可以引起继发性自主神经功能紊乱(autonomic dysfunction, AD),对人体健康造成危害。通过动物实验和临床测试手段筛查AD化学品,过程复杂、耗时长且成本高,有必要发展高通量的筛查方法。目前,化学品诱发AD的机制复杂,尚缺乏筛查AD化学品的机器学习模型。本研究基于文献和数据库挖掘,构建了涵盖4种AD临床不良症状(直立性低血压、失禁、尿失禁、肛门失禁)的数据集,包括466种阳性数据,427种阴性数据。基于该数据集,计算ToxPrint毒性指纹,采用5种机器学习算法(决策树、支持向量机、k近邻、随机森林、梯度提升决策树)构建了AD化学品的筛查模型。随机森林模型的分类性能最优,训练集准确率达0.738,验证集准确率达0.737,若考虑模型应用域,当相似性阈值为0.75时,验证集准确率提高至0.752。此外,本研究耦合SHAP(SHapley Additive exPlanations)方法和子结构片段频率分析方法,揭示了诱发AD的16种警示子结构,包括9种键、3种链、3种环和1种基团结构。基于所发展的机器学习筛查模型,拓展了对AD机制的认识和理解,为神经毒性化学品的筛查和评价提供参考。

English Abstract

参考文献 (47)

返回顶部

目录

/

返回文章
返回