海水曝气对海洋微生物群落和抗生素抗性基因的影响
Effects of Seawater Aeration on Marine Microbial Communities and Antibiotic Resistance Genes
-
摘要: 占地球表面71%的海洋蕴含丰富且独特的微生物资源。为维持海产品的鲜活,人们常采用循环暂养技术,通过曝气装置增加水体含氧量。本研究运用宏基因组技术,分析氧含量变化对海洋微生物群落结构、功能组成及抗生素抗性基因的影响。研究发现,高氧海水中的以α-变形菌纲为主的微生物群落多样性较高,而微生物群落功能多样性则随着氧浓度升高而降低。海洋微生物中多种抗生素抗性基因与毒力因子基因丰度下降。这表明海水中氧含量的上升可以减少微生物的抗药性和致病潜能,从而降低其对人类健康的潜在风险。Abstract: Covering 71% of the Earth's surface, the oceans harbor abundant and distinct microbial resources. To preserve the freshness of seafood, cyclic temporary breeding technique is commonly used to elevate oxygen level in water. Our study employed metagenomic technique to analyze the influence of oxygen level on the structure, functional traits, and antibiotic resistance genes of microbial communities in marine. Results indicated that marine microbial community was dominated by Alphaproteobacteria and exhibited higher diversity in high-oxygen level than which in low level. However, functional diversity of microbial communities decreased with the rising oxygen level. The abundances of various antibiotic resistance genes and virulence factor genes declined significantly with increasing oxygen concentration. These results suggested that the rise of oxygen level in seawater can reduce microbial resistance to antibiotics and their pathogenicity, thereby mitigate potential health risks to humans.
-
-
Dehghani S, Hosseini S V, Regenstein J M. Edible films and coatings in seafood preservation: A review[J]. Food Chemistry, 2018, 240: 505-513 Hassoun A, Siddiqui S A, Smaoui S, et al. Seafood processing, preservation, and analytical techniques in the age of industry 4.0[J]. Applied Sciences, 2022, 12(3): 1703 张偲, 张长生, 田新朋, 等. 中国海洋微生物多样性研究[J]. 中国科学院院刊, 2010, 25(6): 651-658 Zhang S, Zhang C S, Tian X P, et al. The study of diversities of marine microbes in China[J]. Bulletin of Chinese Academy of Sciences, 2010, 25(6): 651-658(in Chinese)
del Giorgio P A. Progress and perspectives in aquatic microbial ecology: Introduction[J]. Aquatic Microbial Ecology, 2010, 61(3): 219-220 胡晓娟. 广东典型海域微生物群落特征分析[D]. 广州: 暨南大学, 2013: 50-54 Hu X J. Analysis of microbial community characteristics in typical marine areas of Guangdong[D]. Guangzhou: Jinan University, 2013:50 -54(in Chinese)
Zhu L, Lian Y L, Lin D, et al. Insights into microbial contamination in multi-type manure-amended soils: The profile of human bacterial pathogens, virulence factor genes and antibiotic resistance genes[J]. Journal of Hazardous Materials, 2022, 437: 129356 Hatosy S M, Martiny A C. The ocean as a global reservoir of antibiotic resistance genes[J].Applied and Environmental Microbiology, 2015, 81(21): 7593-7599 Xu N H, Qiu D Y, Zhang Z Y, et al. A global atlas of marine antibiotic resistance genes and their expression[J]. Water Research, 2023, 244: 120488 Fernandes N, Case R J, Longford S R, et al. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra[J]. PLoS One, 2011, 6(12): e27387 Billaud M, Seneca F, Tambutté E, et al. An increase of seawater temperature upregulates the expression of Vibrio parahaemolyticus virulence factors implicated in adhesion and biofilm formation[J]. Frontiers in Microbiology, 2022, 13: 840628 Armbruster C R, Parsek M R. New insight into the early stages of biofilm formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(17): 4317-4319 Lopatek M, Wieczorek K, Osek J. Antimicrobial resistance, virulence factors, and genetic profiles of Vibrio parahaemolyticus from seafood[J]. Applied and Environmental Microbiology, 2018, 84(16): e00537-e00518 Bondarczuk K, Markowicz A, Piotrowska-Seget Z. The urgent need for risk assessment on the antibiotic resistance spread via sewage sludge land application[J]. Environment International, 2016, 87: 49-55 Unc A, Zurek L, Peterson G, et al. Microarray assessment of virulence, antibiotic, and heavy metal resistance in an agricultural watershed creek[J]. Journal of Environmental Quality, 2012, 41(2): 534-543 Berg G, Eberl L, Hartmann A. The rhizosphere as a reservoir for opportunistic human pathogenic bacteria[J]. Environmental Microbiology, 2005, 7(11): 1673-1685 Bertagnolli A D, Stewart F J. Microbial niches in marine oxygen minimum zones[J]. Nature Reviews Microbiology, 2018, 16: 723-729 徐新亚, 杨宏, 宁小清, 等. 北部湾海洋微生物物种多样性与化学多样性研究进展[J]. 广西科学, 2020, 27(5): 433-450 , 461 Xu X Y, Yang H, Ning X Q, et al. Research progress of marine microbial diversity and chemical diversity in Beibu Gulf[J]. Guangxi Sciences, 2020, 27(5): 433-450, 461(in Chinese)
Yang S J, Kang I, Cho J C. Expansion of cultured bacterial diversity by large-scale dilution-to-extinction culturing from a single seawater sample[J].Microbial Ecology, 2016, 71(1): 29-43 Gao X Y, Xu Y, Liu Y, et al. Bacterial diversity, community structure and function associated with biofilm development in a biological aerated filter in a recirculating marine aquaculture system[J]. Marine Biodiversity, 2012, 42(1): 1-11 Zinser E R. The microbial contribution to reactive oxygen species dynamics in marine ecosystems[J]. Environmental Microbiology Reports, 2018, 10(4): 412-427 Galand P, Lucas S, Fagervold S, et al. Disturbance increases microbial community diversity and production in marine sediments[J]. Frontiers in Microbiology, 2016, 7: 1950 Louca S, Polz M F, Mazel F, et al. Function and functional redundancy in microbial systems[J]. Nature Ecology & Evolution, 2018, 2: 936-943 Jessen G L, Lichtschlag A, Ramette A, et al. Hypoxia causes preservation of labile organic matter and changes seafloor microbial community composition (Black Sea)[J]. Science Advances, 2017, 3(2): e1601897 Loza A, García-Guevara F, Segovia L, et al. Definition of the metagenomic profile of ocean water samples from the gulf of Mexico based on comparison with reference samples from sites worldwide[J]. Frontiers in Microbiology, 2021, 12: 781497 Hu Z, Feng J, Song H, et al. Metabolic response of Mercenaria mercenaria under heat and hypoxia stress by widely targeted metabolomic approach[J]. The Science of the Total Environment, 2022, 809: 151172 Dölle C, Rack J G M, Ziegler M. NAD and ADP-ribose metabolism in mitochondria[J]. The FEBS Journal, 2013, 280(15): 3530-3541 Duff J P, AbuOun M, Bexton S, et al. Resistance to carbapenems and other antibiotics in Klebsiella pneumoniae found in seals indicates anthropogenic pollution[J]. The Veterinary Record, 2020, 187(4): 154 Founou L L, Founou R C, Essack S. Antibiotic resistance in the food chain: A developing country-perspective[J]. Frontiers in Microbiology, 2016, 7: 1881 Michniewski S, Rihtman B, Cook R, et al. A new family of “megaphages” abundant in the marine environment[J]. ISME Communications, 2021, 1(1): 58 Zhang Q, Zhang Z Y, Lu T, et al. Cyanobacterial blooms contribute to the diversity of antibiotic-resistance genes in aquatic ecosystems[J]. Communications Biology, 2020, 3(1): 737 Felis E, Kalka J, Sochacki A, et al. Antimicrobial pharmaceuticals in the aquatic environment: Occurrence and environmental implications[J]. European Journal of Pharmacology, 2020, 866: 172813 Chen Y W, Wu Y Y, Qin L M, et al. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors[J]. Virulence, 2021, 12(1): 788-817 Vlaanderen E J, Ghaly T M, Moore L R, et al. Plastic leachate exposure drives antibiotic resistance and virulence in marine bacterial communities[J]. Environmental Pollution, 2023, 327: 121558 Karan S, Garg L C, Choudhury D, et al. Recombinant FimH, a fimbrial tip adhesin of Vibrio parahaemolyticus, elicits mixed T helper cell response and confers protection against Vibrio parahaemolyticus challenge in murine model[J]. Molecular Immunology, 2021, 135: 373-387 许雪莲, 韩阿祥, 叶诗晴, 等. 温州口岸截获蜱体内微生物群落结构、抗生素抗性基因及毒力因子的宏基因组分析[J]. 中国媒介生物学及控制杂志, 2021, 32(6): 763-771 Xu X L, Han A X, Ye S Q, et al. Metagenomic analysis of microbial community structure, antibiotic resistance genes, and virulence factors of ticks captured at Wenzhou Port, Zhejiang Province, China[J]. Chinese Journal of Vector Biology and Control, 2021, 32(6): 763-771(in Chinese)
Jasim Al-Thabhawee M H, Muttaleb Al-Dahmoshi H. Molecular investigation of outer membrane channel genes among multidrug resistance clinical Pseudomonas aeruginosa isolates[J]. Reports of Biochemistry & Molecular Biology, 2022, 11(1): 102-110 -

计量
- 文章访问数: 923
- HTML全文浏览数: 923
- PDF下载数: 132
- 施引文献: 0