湿地植物对镉和抗生素单一及复合污染物的去除机制
Removal Mechanisms of Single and Combined Pollutants of Cadmium and Antibiotics by Wetland Plants
-
摘要: 本文对镉和抗生素残留的湿地植物体内体外2条去除途径、镉-抗生素复合污染的湿地植物去除研究进展进行综述。湿地植物根系是植物去除镉的主要部位——镉在湿地植物根际微环境的迁移转化受根际分泌物有机酸、土壤理化性质、微生物群落等影响,植物体内螯合素的螯合/络合作用对镉的植物体内去除起重要影响,而植物根表铁膜是重要的植物体外螯合物,是植物根际-微生物共同体发挥去除效应的场所。湿地植物-微生物协同效应能有效去除抗生素残留污染,但抗生素残留对根际微生物群落组成和结构影响显著,存在产生抗生素抗性细菌和抗性基因的风险。镉和抗生素复合污染因污染物母体种类、浓度不同而表现出不同的络合物行为特征,进而影响对湿地植物的毒性作用;也同时带有污染物母体的毒性特征,呈现复杂的毒性机制。相较于环境中的综合性污染现状,目前仅对少数种类重金属和抗生素复合污染的湿地植物去除进行研究。结合近年来国内外研究进展,我们提出湿地植物去除抗生素及其重金属抗生素复合污染物现有研究的不足及未来发展方向,以期为重金属和抗生素复合污染的湿地植物修复技术提供理论支撑。Abstract: In this review, we summarized the in vitro and in vivo removal approaches of cadmium and antibiotics residues and the combined removal methods of cadmium and antibiotics in wetland plants. The roots of wetland plant is the main part for cadmium removing, the migration and transformation of cadmium in wetland plant rhizosphere microenvironment were affected by organic acids in rhizosphere secretions, soil physical and chemical properties, and microbial community. Chelation/complexation of chelates in plant played an important role in the removal of cadmium in plant body, and iron film on plant root surface was an important chelate in vitro to exert its removal efficiency. The synergistic effect of plant-microorganisms in wetlands could effectively remove antibiotic residues. However, antibiotic residues significantly affected the composition and structure of the rhizosphere microbial community, with the risk of producing antibiotic-resistant bacteria and antibiotic-resistant genes. Combined-pollution by cadmium and antibiotics showed different complex behavior characteristics due to their various type and the concentration of the pollutants show, leading to toxic effects on wetland plants. Complex pollutants exhibit the toxic properties of their parent pollutant and entail intricate mechanisms of toxicity. Recently, there are a few studies on the synergic removal of heavy metals and antibiotics using wetland plants. Given that, we proposed the deficiencies and future development directions of the current research on the removal of heavy metal and antibiotics by wetland plants, to provide theoretical support for wetland phytoremediation technology of heavy metal and antibiotic pollution.
-
-
Keddy P A. 湿地生态学: 原理与保护[M]. 兰志春, 黎磊, 沈瑞昌, 译. 北京: 高等教育出版社, 2018: 39 李佳琳, 巨龙, 崔梦, 等. 磺胺类抗生素的污染现状与去除技术研究进展[J]. 安徽农业科学, 2021, 49(21): 27-32 Li J L, Ju L, Cui M, et al. Status of sulfonamides pollution and research progress of removal technology[J]. Journal of Anhui Agricultural Sciences, 2021, 49(21): 27-32(in Chinese)
綦峥, 齐越, 杨红, 等. 土壤重金属镉污染现状、危害及治理措施[J]. 食品安全质量检测学报, 2020, 11(7): 2286-2294 Qi Z, Qi Y, Yang H, et al. Status, harm and treatment measures of heavy metal cadmium pollution in soil[J]. Journal of Food Safety & Quality, 2020, 11(7): 2286-2294(in Chinese)
赵增锋. 太阳山湿地水环境重金属分布特征及生态风险评价[D]. 银川: 宁夏大学, 2021: 62 Zhao Z F. Distribution characteristics and ecological risk assessment of heavy metals in water environment of Taiyangshan wetland[D]. Yinchuan: Ningxia University, 2021: 62(in Chinese) 孙晶, 李伟, 吕学斌, 等. 中国重要湿地土壤中汞、砷的分布与污染概况[J]. 环境科学与技术, 2021, 44(9): 100-110 Sun J, Li W, Lyu X B, et al. Distribution and pollution situation of mercury and arsenic in important wetlands soil in China[J]. Environmental Science & Technology, 2021, 44(9): 100-110(in Chinese)
Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation[J]. Journal of Chemistry, 2019, 2019: 6730305 Qin G W, Niu Z D, Yu J D, et al. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology[J]. Chemosphere, 2021, 267: 129205 Balali-Mood M, Naseri K, Tahergorabi Z, et al. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic[J]. Frontiers in Pharmacology, 2021, 12: 643972 Shrestha R, Ban S, Devkota S, et al. Technological trends in heavy metals removal from industrial wastewater: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105688 Haider F U, Cai L Q, Coulter J A, et al. Cadmium toxicity in plants: Impacts and remediation strategies[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111887 陈姗, 许凡, 张玮, 等. 磺胺类抗生素污染现状及其环境行为的研究进展[J]. 环境化学, 2019, 38(7): 1557-1569 Chen S, Xu F, Zhang W, et al. Research progress in pollution situation and environmental behavior of sulfonamides[J]. Environmental Chemistry, 2019, 38(7): 1557-1569(in Chinese)
中华人民共和国生态环境部. 重点管控新污染物清单(2023年版)[EB/OL]. (2022-12-30)[2023-06-21]. https://www.gov.cn/zhengce/2022-12/30/content_5734728.htm. 林吟萱, 于娇, 吴玲玲. 抗生素和重金属复合污染现状及其生态效应研究进展[J]. 应用化工, 2023, 52(2): 504-510 Lin Y X, Yu J, Wu L L. The status and ecological effects of antibiotics and heavy metals combined pollution: A review[J]. Applied Chemical Industry, 2023, 52(2): 504-510(in Chinese)
Zainab S M, Junaid M, Xu N, et al. Antibiotics and antibiotic resistant genes (ARGs) in groundwater: A global review on dissemination, sources, interactions, environmental and human health risks[J]. Water Research, 2020, 187: 116455 Chow L K M, Ghaly T M, Gillings M R. A survey of sub-inhibitory concentrations of antibiotics in the environment[J]. Journal of Environmental Sciences (China), 2021, 99: 21-27 Tian S H, Zhang C, Huang D L, et al. Recent progress in sustainable technologies for adsorptive and reactive removal of sulfonamides[J]. Chemical Engineering Journal, 2020, 389: 123423 徐舟影, 孟发科, 吕意超, 等. 抗生素与重金属复合污染废水处理的研究进展[J]. 环境科学研究, 2021, 34(11): 2686-2695 Xu Z Y, Meng F K, Lyu Y C, et al. Research progress in treatment of antibiotics and heavy metals compound polluted wastewater[J]. Research of Environmental Sciences, 2021, 34(11): 2686-2695(in Chinese)
黄翔峰, 熊永娇, 彭开铭, 等. 金属离子络合对抗生素去除特性的影响研究进展[J]. 环境化学, 2016, 35(1): 133-140 Huang X F, Xiong Y J, Peng K M, et al. The progress of antibiotics removal performance under the complexion effect of metal ions[J]. Environmental Chemistry, 2016, 35(1): 133-140(in Chinese)
Hu H, Li X, Wu S H, et al. Sustainable livestock wastewater treatment via phytoremediation: Current status and future perspectives[J]. Bioresource Technology, 2020, 315: 123809 周晓声, 娄厦, Larisa Dorzhievna Radnaeva, 等. 植物对土壤重金属富集特性研究进展[J]. 生态毒理学报, 2022, 17(3): 400-410 Zhou X S, Lou S, Radnaeva L, et al. Advances in heavy metal accumulation characteristics of plants in soil[J]. Asian Journal of Ecotoxicology, 2022, 17(3): 400-410(in Chinese)
谢换换, 叶志鸿. 湿地植物根形态结构和泌氧与盐和重金属吸收、积累、耐性关系的研究进展[J]. 生态学杂志, 2021, 40(3): 864-875 Xie H H, Ye Z H. Research advances in the relationship between root morphological structure, radial oxygen loss and salt/heavy metal uptake, accumulation and tolerance of wetland plants[J]. Chinese Journal of Ecology, 2021, 40(3): 864-875(in Chinese)
漆世英, 余少乐, 吴娟, 等. 养殖业抗生素-重金属复合污染治理研究进展[J]. 中国生态农业学报(中英文), 2022, 30(6): 1014-1026 Qi S Y, Yu S L, Wu J, et al. Advance in treatment of co-contamination of antibiotics and heavy metals from stock breeding[J]. Chinese Journal of Eco-Agriculture, 2022, 30(6): 1014-1026(in Chinese) 秦玉, 李慧莉, 尹晓雪, 等. 人工湿地抗生素与重金属的去除及其环境影响[J]. 环境保护科学, 2021, 47(6): 121-126 Qin Y, Li H L, Yin X X, et al. Removal of antibiotics and heavy metals in constructed wetlands and their environmental impacts[J]. Environmental Protection Science, 2021, 47(6): 121-126(in Chinese)
武坤, 孔潇, 董郁, 等. 人工湿地植物对污水中重金属铬、镉、铅富集能力的整合分析[J]. 江苏农业学报, 2022, 38(6): 1532-1540 Wu K, Kong X, Dong Y, et al. Meta-analysis of the accumulation ability of wetland plants to chromium, cadmium and lead in wastewater[J]. Jiangsu Journal of Agricultural Sciences, 2022, 38(6): 1532-1540(in Chinese)
陈银萍, 丁浚刚, 柯昀琪, 等. 不同植物配置人工湿地对废水中镉的去除和富集效应[J]. 水生态学杂志, 2021, 42(3): 114-120 Chen Y P, Ding J G, Ke Y Q, et al. Removal and enrichment of cadmium in wastewater by different plant combinations in constructed wetlands[J]. Journal of Hydroecology, 2021, 42(3): 114-120(in Chinese)
Ali F, Jilani G, Fahim R, et al. Functional and structural roles of wiry and sturdy rooted emerged macrophytes root functional traits in the abatement of nutrients and metals[J]. Journal of Environmental Management, 2019, 249: 109330 Chandanshive V, Kadam S, Rane N, et al. In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds[J]. Chemosphere, 2020, 252: 126513 de Oliveira J P V, Pereira M P, Duarte V P, et al. Root anatomy, growth, and development of Typha domingensis Pers. (Typhaceae) and their relationship with cadmium absorption, accumulation, and tolerance[J]. Environmental Science and Pollution Research International, 2022, 29(13): 19878-19889 Yu S H, Sheng L, Zhang C Y, et al. Physiological response of Arundo donax to cadmium stress by Fourier transform infrared spectroscopy[J]. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 2018, 198: 88-91 Xin J P, Ma S S, Li Y, et al. Pontederia cordata, an ornamental aquatic macrophyte with great potential in phytoremediation of heavy-metal-contaminated wetlands[J]. Ecotoxicology and Environmental Safety, 2020, 203: 111024 Shackira A M, Puthur J T. Enhanced phytostabilization of cadmium by a halophyte: Acanthus ilicifolius L.[J]. International Journal of Phytoremediation, 2017, 19(4): 319-326 赵怀宝, 殷寿延. 红树植物卤蕨的组织培养[J]. 海南热带海洋学院学报, 2019, 26(5): 34-39 Zhao H B, Yin S Y. Tissue culture of Acrostichum auream L.[J]. Journal of Hainan Tropical Ocean University, 2019, 26(5): 34-39(in Chinese)
Huang X, Wang X P, Li X Z, et al. Occurrence and transfer of heavy metals in sediments and plants of Aegiceras corniculatum community in the Qinzhou Bay, southwestern China[J]. Acta Oceanologica Sinica, 2020, 39(2): 79-88 Li J, Yu J Y, Yan C L, et al. Distribution correlations of cadmium to calcium, phosphorus, sodium and chloridion in mangrove Aegiceras corniculatum root tissues[J]. Marine Pollution Bulletin, 2018, 126: 179-183 李晶, 崔丽娟, 张曼胤, 等. 植物对不同类型湿地污染物的去除机制[J]. 水生态学杂志, 2018, 39(3): 1-7 Li J, Cui L J, Zhang M Y, et al. Removal mechanisms of different types of pollutants in the wetland[J]. Journal of Hydroecology, 2018, 39(3): 1-7(in Chinese)
张星雨, 叶志彪, 张余洋. 植物响应镉胁迫的生理与分子机制研究进展[J]. 植物生理学报, 2021, 57(7): 1437-1450 Zhang X Y, Ye Z B, Zhang Y Y. Advances in physiological and molecular mechanism of plant response to cadmium stress[J]. Plant Physiology Journal, 2021, 57(7): 1437-1450(in Chinese)
刘自然, 甄珍, 陈强, 等. 植物响应Cd胁迫研究进展[J]. 生物技术通报, 2022, 38(6): 13-26 Liu Z R, Zhen Z, Chen Q, et al. Research progress in plant response to Cd stress[J]. Biotechnology Bulletin, 2022, 38(6): 13-26(in Chinese)
Talebi M, Tabatabaei B E S, Akbarzadeh H. Hyperaccumulation of Cu, Zn, Ni, and Cd in Azolla species inducing expression of methallothionein and phytochelatin synthase genes[J]. Chemosphere, 2019, 230: 488-497 徐思琦, 沈小雪, 李瑞利. 湿地植物根表铁膜研究评述[C]//面向全球变化的水系统创新研究: 第十五届中国水论坛论文集. 北京: 中国水利水电出版社, 2017: 267-274 Li J, Liu J C, Yan C L, et al. The alleviation effect of iron on cadmium phytotoxicity in mangrove A. marina. alleviation effect of iron on cadmium phytotoxicity in mangrove Avicennia marina (Forsk.) Vierh.[J]. Chemosphere, 2019, 226: 413-420 Zhang Q Q, Yan Z Z, Li X Z. Ferrous iron facilitates the formation of iron plaque and enhances the tolerance of Spartina alterniflora to artificial sewage stress[J]. Marine Pollution Bulletin, 2020, 157: 111379 Zhang Q Q, Yan Z Z, Li X Z, et al. Formation of iron plaque in the roots of Spartina alterniflora and its effect on the immobilization of wastewater-borne pollutants[J]. Ecotoxicology and Environmental Safety, 2019, 168: 212-220 Xu J Y, Wang X L, Liu J F, et al. The influence of water regime on cadmium uptake by Artemisia: A dominant vegetation in Poyang Lake wetland[J]. Journal of Environmental Management, 2021, 297: 113258 孟慧婕. 淹水、有机酸及重金属处理对秋茄根系分泌、根际细菌及根表铁膜的影响[D]. 上海: 华东师范大学, 2022: 110 Meng H J. Effects of flooding, organic acids and heavy metals treatment on root exudates, rhizosphere bacteria and rhizoplane Fe plaque of Kandelia obovata[D]. Shanghai: East China Normal University, 2022: 110(in Chinese) 胡蓝方. 镉污染土壤中东南景天根系分泌物对根际微生态的影响[D]. 福州: 福建农林大学, 2022: 69 Hu L F. Effects of root exudates from Sedum alfredii on rhizosphere microbial ecology in cadmium-contaminated soil[D]. Fuzhou: Fujian Agriculture and Forestry University, 2022: 69(in Chinese) 于劲松, 周栩丹, 王晗癑, 等. 重金属镉与氨基酸类单体相互作用的亲合方式和驱动力研究[J]. 工业微生物, 2022, 52(4): 6-13 Yu J S, Zhou X D, Wang H N, et al. Affinity mode and driving force of interaction between heavy metal cadmium and amino acid monomers[J]. Industrial Microbiology, 2022, 52(4): 6-13(in Chinese)
周季妮, 杨琛, 宋之怡, 等. 四环素与镉复合污染对水稻根系的影响[J]. 环境科学学报, 2021, 41(4): 1518-1528 Zhou J N, Yang C, Song Z Y, et al. Influences of tetracycline and cadmium on rice roots: Growth and root exudates[J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1518-1528(in Chinese)
Yang J X, Zheng G D, Yang J, et al. Phytoaccumulation of heavy metals (Pb, Zn, and Cd) by 10 wetland plant species under different hydrological regimes[J]. Ecological Engineering, 2017, 107: 56-64 Li W C, Deng H, Wong M H. Effects of Fe plaque and organic acids on metal uptake by wetland plants under drained and waterlogged conditions[J]. Environmental Pollution, 2017, 231(Pt 1): 732-741 Xu B, Yu J Y, Xie T, et al. Brassinosteroids and iron plaque affect arsenic and cadmium uptake by rice seedlings grown in hydroponic solution[J]. Biologia Plantarum, 2018, 62(2): 362-368 张鹏. 红蛋在镉胁迫下的根系结构变化与根际土壤化学机制研究[D]. 南宁: 广西大学, 2012: 68 Zhang P. Study on root structure changes and rhizosphere soil chemical mechanism of red egg under cadmium stress[D]. Nanning: Guangxi University, 2012: 68(in Chinese) 和君强, 刘代欢, 邓林, 等. 农田土壤镉生物有效性及暴露评估研究进展[J]. 生态毒理学报, 2017, 12(6): 69-82 He J Q, Liu D H, Deng L, et al. Bioavailability and exposure assessment of cadmium in farmland soil: A review[J]. Asian Journal of Ecotoxicology, 2017, 12(6): 69-82(in Chinese)
李甜田. 湿地理化性质对土壤中Pb、Cd生物有效性的影响研究[D]. 长春: 东北师范大学, 2019: 69 Li T T. Effects of physicochemical properties on the bioavailability of Pb and Cd in soils in wetland systems[D]. Changchun: Northeast Normal University, 2019: 69(in Chinese) Yuan Q J, Sui M P, Qin C Z, et al. Migration, transformation and removal of macrolide antibiotics in the environment: A review[J]. Environmental Science and Pollution Research International, 2022, 29(18): 26045-26062 Zhu T T, Su Z X, Lai W X, et al. Insights into the fate and removal of antibiotics and antibiotic resistance genes using biological wastewater treatment technology[J]. Science of the Total Environment, 2021, 776: 145906 Dan D, Chen C X, Zou M Y, et al. Removal efficiency, kinetic, and behavior of antibiotics from sewage treatment plant effluent in a hybrid constructed wetland and a layered biological filter[J]. Journal of Environmental Management, 2021, 288: 112435 Ma J W, Cui Y B, Li A M, et al. Antibiotics and antibiotic resistance genes from wastewater treated in constructed wetlands[J]. Ecological Engineering, 2022, 177: 106548 Krzeminski P, Tomei M C, Karaolia P, et al. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review[J]. The Science of the Total Environment, 2019, 648: 1052-1081 Panja S, Sarkar D, Zhang Z M, et al. Removal of antibiotics and nutrients by vetiver grass (Chrysopogon zizanioides) from a plug flow reactor based constructed wetland model[J]. Toxics, 2021, 9(4): 84 Dalahmeh S, Björnberg E, Elenström A K, et al. Pharmaceutical pollution of water resources in Nakivubo wetlands and Lake Victoria, Kampala, Uganda[J]. Science of the Total Environment, 2020, 710: 136347 Du L, Zhao Y Q, Wang C, et al. Removal performance of antibiotics and antibiotic resistance genes in swine wastewater by integrated vertical-flow constructed wetlands with zeolite substrate[J]. The Science of the Total Environment, 2020, 721: 137765 范增增, 赵伟, 杨新萍. 高风险四环素抗性基因在人工湿地中分布和去除的季节变化[J]. 应用生态学报, 2022, 33(11): 2997-3006 Fan Z Z, Zhao W, Yang X P. Seasonal variation of distribution and removal of high-risk tetracycline resistance genes in constructed wetland[J]. Chinese Journal of Applied Ecology, 2022, 33(11): 2997-3006(in Chinese)
Dan A, Li L, Tai Y P, et al. Behavior assessment of sulfonamides and N4-acetyl sulfonamides from wastewater effluent in subsurface constructed wetlands: Removal, distribution, and biotransformation[J]. Chemical Engineering Journal, 2020, 396: 125252 Dan A, Zhang X M, Dai Y N, et al. Occurrence and removal of quinolone, tetracycline, and macrolide antibiotics from urban wastewater in constructed wetlands[J]. Journal of Cleaner Production, 2020, 252: 119677 Ouyang W Y, Birkigt J, Richnow H H, et al. Anaerobic transformation and detoxification of sulfamethoxazole by sulfate-reducing enrichments and Desulfovibrio vulgaris[J]. Environmental Science & Technology, 2021, 55(1): 271-282 Zhang S, Lu Y X, Zhang J J, et al. Constructed wetland revealed efficient sulfamethoxazole removal but enhanced the spread of antibiotic resistance genes[J]. Molecules, 2020, 25(4): 834 Chen J, Liu S S, He L X, et al. The fate of sulfonamides in the process of phytoremediation in hydroponics[J]. Water Research, 2021, 198: 117145 张婧妍. 4种湿地挺水植物对磺胺甲恶唑胁迫响应的研究[D]. 哈尔滨: 哈尔滨工程大学, 2019: 91 Zhang J Y. Study on the response of four wetland emergent plants to sulfamethoxazole stress[D]. Harbin: Harbin Engineering University, 2019: 91(in Chinese) Kurade M B, Xiong J Q, Govindwar S P, et al. Uptake and biodegradation of emerging contaminant sulfamethoxazole from aqueous phase using Ipomoea aquatica[J]. Chemosphere, 2019, 225: 696-704 Ruan W F, Wang J X, Huang J, et al. The in vivo and vitro degradation of sulfonamides in wetland plants reducing phytotoxicity and environmental pollution[J]. Environmental Science and Pollution Research International, 2022, 29(43): 64972-64982 Wang J X, Man Y, Ruan W F, et al. The effect of rhizosphere and the plant species on the degradation of sulfonamides in model constructed wetlands treating synthetic domestic wastewater[J]. Chemosphere, 2022, 288: 132487 Tai Y P, Fung-Yee Tam N, Ruan W F, et al. Specific metabolism related to sulfonamide tolerance and uptake in wetland plants[J]. Chemosphere, 2019, 227: 496-504 李琴. 会仙湿地植物根际对磺胺类抗生素降解的影响机理研究[D]. 桂林: 桂林理工大学, 2021: 94 Li Q. Study on the influence mechanism of rhizosphere plants on the degradation of sulfonamides in Huixian wetland[D]. Guilin: Guilin University of Technology, 2021: 94(in Chinese) 周品成. 抗生素在人工湿地中的去除及对植物生长和污水处理效果的影响[D]. 广州: 华南农业大学, 2019: 66 Zhou P C. Removal of antibiotics in constructed wetland and its effect on plant growth and sewage treatment[D]. Guangzhou: South China Agricultural University, 2019: 66(in Chinese) Ma J W, Cui Y B, Li A M, et al. Evaluation of the fate of nutrients, antibiotics, and antibiotic resistance genes in sludge treatment wetlands[J]. The Science of the Total Environment, 2020, 712: 136370 Yan D F, Ma W, Song X J, et al. The effect of iron plaque on uptake and translocation of norfloxacin in rice seedlings grown in paddy soil[J]. Environmental Science and Pollution Research International, 2017, 24(8): 7544-7554 Wang J W, Long Y N, Yu G L, et al. A review on microorganisms in constructed wetlands for typical pollutant removal: Species, function, and diversity[J]. Frontiers in Microbiology, 2022, 13: 845725 Tong X N, Wang X Z, He X J, et al. Effects of antibiotics on microbial community structure and microbial functions in constructed wetlands treated with artificial root exudates[J]. Environmental Science Processes & Impacts, 2020, 22(1): 217-226 Brunhoferova H, Venditti S, Laczny C C, et al. Bioremediation of 27 micropollutants by symbiotic microorganisms of wetland macrophytes[J]. Sustainability, 2022, 14(7): 3944 Ohore O E, Qin Z R, Sanganyado E, et al. Ecological impact of antibiotics on bioremediation performance of constructed wetlands: Microbial and plant dynamics, and potential antibiotic resistance genes hotspots[J]. Journal of Hazardous Materials, 2022, 424(Pt B): 127495 Man Y, Wang J X, Tam N F, et al. Responses of rhizosphere and bulk substrate microbiome to wastewater-borne sulfonamides in constructed wetlands with different plant species[J]. The Science of the Total Environment, 2020, 706: 135955 Xu J M, Liu X H, Lv Y, et al. Response of Cyperus involucratus to sulfamethoxazole and ofloxacin-contaminated environments: Growth physiology, transportation, and microbial community[J]. Ecotoxicology and Environmental Safety, 2020, 206: 111332 Lv Y, Li Y Y, Liu X H, et al. The tolerance mechanism and accumulation characteristics of Phragmites australis to sulfamethoxazole and ofloxacin[J]. Chemosphere, 2020, 253: 126695 Sauvêtre A, Węgrzyn A, Yang L H, et al. Enrichment of endophytic Actinobacteria in roots and rhizomes of Miscanthus×giganteus plants exposed to diclofenac and sulfamethoxazole[J]. Environmental Science and Pollution Research International, 2020, 27(11): 11892-11904 Alexandrino D A M, Mucha A P, Almeida C M R, et al. Biodegradation of the veterinary antibiotics enrofloxacin and ceftiofur and associated microbial community dynamics[J]. The Science of the Total Environment, 2017, 581-582: 359-368 Uddin M, Chen J W, Qiao X L, et al. Bacterial community variations in paddy soils induced by application of veterinary antibiotics in plant-soil systems[J]. Ecotoxicology and Environmental Safety, 2019, 167: 44-53 Li X H, Lu S Y, Liu S D, et al. Shifts of bacterial community and molecular ecological network at the presence of fluoroquinolones in a constructed wetland system[J]. Science of the Total Environment, 2020, 708: 135156 Khurana P, Pulicharla R, Kaur Brar S. Antibiotic-metal complexes in wastewaters: Fate and treatment trajectory[J]. Environment International, 2021, 157: 106863 黄文鑫. 抗生素-铜络合物的光催化降解研究[D]. 南京: 南京师范大学, 2020: 75 Huang W X. Study on photocatalytic degradation of antibiotic-copper complex[D]. Nanjing: Nanjing Normal University, 2020: 75(in Chinese) 汪晨. 水中典型药物与重金属的络合行为[D]. 南京: 东南大学, 2016: 43 Wang C. Complexation behavior of typical drugs with heavy metals in water[D]. Nanjing: Southeast University, 2016: 43(in Chinese) Qiang Z M, Adams C. Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics[J]. Water Research, 2004, 38(12): 2874-2890 Peterson J W, Petrasky L J, Seymour M D, et al. Laboratory investigation of antibiotic interactions with Fe2O3 nanoparticles in water[J]. Journal of Environmental Engineering, 2016, 142(5): 1-7 Basaldella E I, Legnoverde M S. Functionalized silica matrices for controlled delivery of cephalexin[J]. Journal of Sol-Gel Science and Technology, 2010, 56(2): 191-196 Çubuk Demiralay E, Koç D, Daldal Y D, et al. Determination of chromatographic dissociation constants of some carbapenem group antibiotics and quantification of these compounds in human urine[J]. Biomedical Chromatography, 2014, 28(5): 660-666 Zhang Q, Chen S, Fan X F, et al. A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving[J]. Applied Catalysis B: Environmental, 2018, 224: 204-213 Pulicharla R, Brar S K, Rouissi T, et al. Degradation of chlortetracycline in wastewater sludge by ultrasonication, Fenton oxidation, and ferro-sonication[J]. Ultrasonics Sonochemistry, 2017, 34: 332-342 Cuprys A, Pulicharla R, Brar S K, et al. Fluoroquinolones metal complexation and its environmental impacts[J]. Coordination Chemistry Reviews, 2018, 376: 46-61 卫承芳, 李佳乐, 孙占学, 等. 水-土壤环境中抗生素污染现状及吸附行为研究进展[J]. 生态毒理学报, 2022, 17(3): 385-399 Wei C F, Li J L, Sun Z X, et al. Research progress of antibiotic pollution and adsorption behavior in water-soil environment[J]. Asian Journal of Ecotoxicology, 2022, 17(3): 385-399(in Chinese)
Graouer-Bacart M, Sayen S, Guillon E. Adsorption of enrofloxacin in presence of Zn(Ⅱ) on a calcareous soil[J]. Ecotoxicology and Environmental Safety, 2015, 122: 470-476 Chen Y, Li H, Wang Z P, et al. Photoproducts of tetracycline and oxytetracycline involving self-sensitized oxidation in aqueous solutions: Effects of Ca2+ and Mg2+[J]. Journal of Environmental Sciences, 2011, 23(10): 1634-1639 李国婉, 黄柱坚, 黎华寿, 等. 人工湿地基质对磺胺甲恶唑和六价铬复合污染的吸附性能[J]. 农业环境科学学报, 2023, 42(6): 1355-1367 Li G W, Huang Z J, Li H S, et al. Adsorption performance of different substrates to combined sulfamethoxazole and hexavalent chromium pollution in a constructed wetland[J]. Journal of Agro-Environment Science, 2023, 42(6): 1355-1367(in Chinese)
Lu J B, Zhang W, Zhang X T, et al. Efficient removal of tetracycline-Cu complexes from water by electrocoagulation technology[J]. Journal of Cleaner Production, 2021, 289: 125729 Du X, Yang W P, Liu Y, et al. Removal of manganese, ferrous and antibiotics from groundwater simultaneously using peroxymonosulfate-assisted in-situ oxidation/coagulation integrated with ceramic membrane process[J]. Separation and Purification Technology, 2020, 252: 117492 Shao Y Y, Gao Y, Yue Q Y, et al. Degradation of chlortetracycline with simultaneous removal of copper (Ⅱ) from aqueous solution using wheat straw-supported nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2020, 379: 122384 杨玲丽, 马琳, 刘伟, 等. 铜和磺胺甲恶唑复合污染下人工湿地对禽畜养殖尾水的处理效果[J]. 水生生物学报, 2022, 46(10): 1484-1493 , 1592 Yang L L, Ma L, Liu W, et al. Purification performance of rural livestock and poultry breeding tail water by constructed wetland under Cu and SMZ combined pollution[J]. Acta Hydrobiologica Sinica, 2022, 46(10): 1484-1493, 1592(in Chinese)
Guo X, Wang P C, Li Y M, et al. Effect of copper on the removal of tetracycline from water by Myriophyllum aquaticum: Performance and mechanisms[J]. Bioresource Technology, 2019, 291: 121916 Guo X, Liu M M, Zhong H, et al. Potential of Myriophyllum aquaticum for phytoremediation of water contaminated with tetracycline antibiotics and copper[J]. Journal of Environmental Management, 2020, 270: 110867 Guo X, Zhu L, Zhong H, et al. Response of antibiotic and heavy metal resistance genes to tetracyclines and copper in substrate-free hydroponic microcosms with Myriophyllum aquaticum[J]. Journal of Hazardous Materials, 2021, 413: 125444 周季妮. 四环素与镉复合污染对分蘖期水稻生长及根际微生态的影响[D]. 广州: 华南理工大学, 2021: 84 Zhou J N. Effects of tetracycline and cadmium combined pollution on rice growth and rhizosphere microecology at tillering stage[D]. Guangzhou: South China University of Technology, 2021: 84(in Chinese) 杨璐. 磺胺与镉对三种水生植物单一及联合效应探究[D]. 武汉: 武汉大学, 2021: 68 Yang L. Exploration of the single and combined effects of sulfanilamide and cadmium on three aquatic plants[D]. Wuhan: Wuhan University, 2021: 68(in Chinese) Christofilopoulos S, Syranidou E, Gkavrou G, et al. The role of halophyte Juncus acutus L. in the remediation of mixed contamination in a hydroponic greenhouse experiment[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(6): 1665-1674 Guo X, Liu M M, Zhong H, et al. Responses of the growth and physiological characteristics of Myriophyllum aquaticum to coexisting tetracyclines and copper in constructed wetland microcosms[J]. Environmental Pollution, 2020, 261: 114204 Lu X, Gao Y, Luo J, et al. Interaction of veterinary antibiotic tetracyclines and copper on their fates in water and water hyacinth (Eichhornia crassipes)[J]. Journal of Hazardous Materials, 2014, 280: 389-398 Raklami A, Meddich A, Oufdou K, et al. Plants-microorganisms-based bioremediation for heavy metal cleanup: Recent developments, phytoremediation techniques, regulation mechanisms, and molecular responses[J]. International Journal of Molecular Sciences, 2022, 23(9): 5031 Ma T T, Zhou L Q, Chen L K, et al. Oxytetracycline toxicity and its effect on phytoremediation by Sedum plumbizincicola and Medicago sativa in metal-contaminated soil[J]. Journal of Agricultural and Food Chemistry, 2016, 64(42): 8045-8053 Guo X, Zhong H, Li P, et al. Microbial communities responded to tetracyclines and Cu(Ⅱ) in constructed wetlands microcosms with Myriophyllum aquaticum[J]. Ecotoxicology and Environmental Safety, 2020, 205: 111362 李雅, 殷丽萍, 刘丹, 等. 中国抗生素污染现状及对浮游生物的影响[J]. 应用生态学报, 2023, 34(3): 853-864 Li Y, Yin L P, Liu D, et al. Current situation of antibiotic contamination in China and the effect on plankton[J]. Chinese Journal of Applied Ecology, 2023, 34(3): 853-864(in Chinese)
陈欣瑶. 重金属-抗生素单一及复合污染胁迫下土壤生态功能稳定性及其微生物调控机制研究[D]. 苏州: 苏州科技大学, 2019: 96 Chen X Y. Stability of soil ecological function and its microbial regulation mechanism under single and combined pollution stress of heavy metals and antibiotics[D].Suzhou: Suzhou University of Science and Technology, 2019: 96(in Chinese) -

计量
- 文章访问数: 2003
- HTML全文浏览数: 2003
- PDF下载数: 228
- 施引文献: 0