胺碘酮通过诱发免疫紊乱加剧小鼠肝毒性

高玉婷, 毛大庆, 夏大胜, 罗义. 胺碘酮通过诱发免疫紊乱加剧小鼠肝毒性[J]. 生态毒理学报, 2024, 19(1): 54-64. doi: 10.7524/AJE.1673-5897.20231010001
引用本文: 高玉婷, 毛大庆, 夏大胜, 罗义. 胺碘酮通过诱发免疫紊乱加剧小鼠肝毒性[J]. 生态毒理学报, 2024, 19(1): 54-64. doi: 10.7524/AJE.1673-5897.20231010001
Gao Yuting, Mao Daqing, Xia Dasheng, Luo Yi. Amiodarone Aggravates Liver Toxicity in Mice by Inducing Immune Dysregulation[J]. Asian journal of ecotoxicology, 2024, 19(1): 54-64. doi: 10.7524/AJE.1673-5897.20231010001
Citation: Gao Yuting, Mao Daqing, Xia Dasheng, Luo Yi. Amiodarone Aggravates Liver Toxicity in Mice by Inducing Immune Dysregulation[J]. Asian journal of ecotoxicology, 2024, 19(1): 54-64. doi: 10.7524/AJE.1673-5897.20231010001

胺碘酮通过诱发免疫紊乱加剧小鼠肝毒性

    作者简介: 高玉婷(1992-),女,博士研究生,研究方向为人体肠道微生态,E-mail:gaoyt2620@mail.nankai.edu.cn
    通讯作者: 毛大庆,E-mail: maodq@nankai.edu.cn;  罗义,E-mail: luoy@nankai.edu.cn
  • 基金项目:

    国家自然科学基金重点项目(41831287);国家自然科学基金面上项目(42077382)

  • 中图分类号: X171.5

Amiodarone Aggravates Liver Toxicity in Mice by Inducing Immune Dysregulation

    Corresponding authors: Mao Daqing ;  Luo Yi
  • Fund Project:
  • 摘要: 胺碘酮(amiodarone)是临床上广泛使用的第三类抗心律失常药物,临床研究已经发现长期服用胺碘酮会对人体造成副作用,包括肝毒性。鉴于人体与共生微生物形成了一个复杂的共生生态系统,口服胺碘酮对机体的影响,从药物吸收到直接或间接的药物作用,反映了药物与机体以及共生生态系统相互作用的结果。然而,胺碘酮对肝功能的影响及其潜在机制仍然知之甚少。本研究为探讨胺碘酮对肝脏的影响,建立了胺碘酮诱导小鼠模型,采用Lieber-Decarli液体饲料,分别设置200 mg·kg-1的低剂量组和600 mg·kg-1的高剂量组。研究发现胺碘酮处理28 d后,诱发小鼠肝脏转录谱发生改变,与对照组相比,胺碘酮处理组有1 634个差异基因表达显著变化,差异基因富集的KEGG信号通路包括PPAR信号通路、脂肪酸代谢信号通路、胆汁酸分泌、代谢外源物质的细胞色素P450信号通路等。此外,胺碘酮处理组肝脏结构和功能受到损伤,组织病理学分析显示肝脏出现微泡型脂肪肝,脂质新生相关的基因AcacaFasnSrebf1表达上调。血清生化检测结果表明丙氨酸氨基转移酶(ALT)和天冬氨酸氨基转移酶(AST)水平升高,并有浓度依赖性。进一步研究发现胺碘酮引起小鼠肝脏免疫紊乱,促发Th17细胞和Th1细胞比例上调,相应的炎症因子TNF-αTGF-β1IL-17等也显著增加。胺碘酮也诱发脾脏Treg细胞比例下调,CD8阳性细胞比例上调。由此可知,胺碘酮可以诱导小鼠肝脏转录组发生改变,同时造成肝毒性,诱发小鼠自身免疫紊乱,进一步引发炎症反应。
  • 加载中
  • Vassallo P, Trohman R G. Prescribing amiodarone: An evidence-based review of clinical indications[J]. JAMA, 2007, 298(11): 1312-1322
    World Health Organization (WHO). WHO model list of essential medicines[R]. Geneva: WHO, 2015
    Zuo K, Li J, Li K B, et al. Disordered gut microbiota and alterations in metabolic patterns are associated with atrial fibrillation[J]. GigaScience, 2019, 8(6): giz058
    Eskes S A, Wiersinga W M. Amiodarone and thyroid[J]. Best Practice & Research Clinical Endocrinology & Metabolism, 2009, 23(6): 735-751
    Colunga Biancatelli R M, Congedo V, Calvosa L, et al. Adverse reactions of amiodarone[J]. Journal of Geriatric Cardiology, 2019, 16(7): 552-566
    Oliveira M, Melo N, Mota P C, et al. Pleuroparenchymal fibroelastosis as another potential lung toxicity pattern induced by amiodarone[J]. Archivos De Bronconeumologia, 2020, 56(1): 55-56
    Matuskova Z, Anzenbacherova E, Vecera R, et al. Administration of a probiotic can change drug pharmacokinetics: Effect of E. coli Nissle 1917 on amidarone absorption in rats[J]. PLoS One, 2014, 9(2): e87150
    Ingram D V, Jaggarao N S, Chamberlain D A. Ocular changes resulting from therapy with amiodarone[J]. The British Journal of Ophthalmology, 1982, 66(10): 676-679
    Raja K, Thung S N, Fiel M I, et al. Drug-induced steatohepatitis leading to cirrhosis: Long-term toxicity of amiodarone use[J]. Seminars in Liver Disease, 2009, 29(4): 423-428
    Farrell G C. Drugs and steatohepatitis[J]. Seminars in Liver Disease, 2002, 22(2): 185-194
    Lewis J H, Ranard R C, Caruso A, et al. Amiodarone hepatotoxicity: Prevalence and clinicopathologic correlations among 104 patients[J]. Hepatology, 1989, 9(5): 679-685
    Neshat S Y, Quiroz V M, Wang Y J, et al. Liver disease: Induction, progression, immunological mechanisms, and therapeutic interventions[J]. International Journal of Molecular Sciences, 2021, 22(13): 6777
    Hann A, Oo Y H, Perera M T P R. Regulatory T-cell therapy in liver transplantation and chronic liver disease[J]. Frontiers in Immunology, 2021, 12: 719954
    Duryee M J, Klassen L W, Thiele G M. Immunological response in alcoholic liver disease[J]. World Journal of Gastroenterology, 2007, 13(37): 4938-4946
    Berson A, De Beco V, Lettéron P, et al. Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes[J]. Gastroenterology, 1998, 114(4): 764-774
    Farrell G C. Drugs and steatohepatitis[J]. Seminars in Liver Disease, 2002, 22(2): 185-194
    Essrani R, Mehershahi S, Essrani R K, et al. Amiodarone-induced acute liver injury[J]. Case Reports in Gastroenterology, 2020, 14(1): 87-90
    Young T A, Cunningham C C, Bailey S M. Reactive oxygen species production by the mitochondrial respiratory chain in isolated rat hepatocytes and liver mitochondria: Studies using myxothiazol[J]. Archives of Biochemistry and Biophysics, 2002, 405(1): 65-72
    Serviddio G, Bellanti F, Giudetti A M, et al. Mitochondrial oxidative stress and respiratory chain dysfunction account for liver toxicity during amiodarone but not dronedarone administration[J]. Free Radical Biology and Medicine, 2011, 51(12): 2234-2242
    赵圣刚, 陈善浆, 张冉, 等. 决奈达隆和胺碘酮对大鼠肝脏功能及组织的影响[J]. 中国心脏起搏与心电生理杂志, 2013, 27(5): 441-444

    Zhao S G, Chen S J, Zhang R, et al. The effect of dronedarone and amiodarone on hepatic function and morphology in rats[J]. Chinese Journal of Cardiac Pacing and Electrophysiology, 2013, 27(5): 441-444(in Chinese)

    Ernst M C, Sinal C J, Pollak P T. Influence of peroxisome proliferator-activated receptor-alpha (PPARα) activity on adverse effects associated with amiodarone exposure in mice[J]. Pharmacological Research, 2010, 62(5): 408-415
    Wu Q, Zhang X N, Zhao Y, et al. High l-carnitine ingestion impairs liver function by disordering gut bacteria composition in mice[J]. Journal of Agricultural and Food Chemistry, 2020, 68(20): 5707-5714
    Zhang P, Zheng L Y, Duan Y T, et al. Gut microbiota exaggerates triclosan-induced liver injury via gut-liver axis[J]. Journal of Hazardous Materials, 2022, 421: 126707
    Halder R C, Seki S, Weerasinghe A, et al. Characterization of NK cells and extrathymic T cells generated in the liver of irradiated mice with a liver shield[J]. Clinical and Experimental Immunology, 1998, 114(3): 434-447
    Blasco-Algora S, Masegosa-Ataz J, Gutiérrez-García M L, et al. Acute-on-chronic liver failure: Pathogenesis, prognostic factors and management[J]. World Journal of Gastroenterology, 2015, 21(42): 12125-12140
    Hensley M K, Deng J C. Acute on chronic liver failure and immune dysfunction: A mimic of sepsis[J]. Seminars in Respiratory and Critical Care Medicine, 2018, 39(5): 588-597
    Triantafyllou E, Woollard K J, McPhail M J W, et al. The role of monocytes and macrophages in acute and acute-on-chronic liver failure[J]. Frontiers in Immunology, 2018, 9: 2948
    Casulleras M, Zhang I W, López-Vicario C, et al. Leukocytes, systemic inflammation and immunopathology in acute-on-chronic liver failure[J]. Cells, 2020, 9(12): 2632
    Wandrer F, Frangež Ž, Liebig S, et al. Autophagy alleviates amiodarone-induced hepatotoxicity[J]. Archives of Toxicology, 2020, 94(10): 3527-3539
    Rhodes A, Eastwood J B, Smith S A. Early acute hepatitis with parenteral amiodarone: A toxic effect of the vehicle?[J]. Gut, 1993, 34(4): 565-566
    Lu J T, Jones A D, Harkema J R, et al. Amiodarone exposure during modest inflammation induces idiosyncrasy-like liver injury in rats: Role of tumor necrosis factor-alpha[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2012, 125(1): 126-133
    Meng X, Mojaverian P, Doedée M, et al. Bioavailability of amiodarone tablets administered with and without food in healthy subjects[J]. The American Journal of Cardiology, 2001, 87(4): 432-435
    Erez N, Hubel E, Avraham R, et al. Hepatic amiodarone lipotoxicity is ameliorated by genetic and pharmacological inhibition of endoplasmatic reticulum stress[J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2017, 159(2): 402-412
    Rabinowich L, Shibolet O. Drug induced steatohepatitis: An uncommon culprit of a common disease[J]. BioMed Research International, 2015, 2015: 168905
    Vitins A P, Kienhuis A S, Speksnijder E N, et al. Mechanisms of amiodarone and valproic acid induced liver steatosis in mouse in vivo act as a template for other hepatotoxicity models[J]. Archives of Toxicology, 2014, 88(8): 1573-1588
    Fromenty B, Fisch C, Labbe G, et al. Amiodarone inhibits the mitochondrial beta-oxidation of fatty acids and produces microvesicular steatosis of the liver in mice[J]. The Journal of Pharmacology and Experimental Therapeutics, 1990, 255(3): 1371-1376
    Soyama A, Hanioka N, Saito Y, et al. Amiodarone N-deethylation by CYP2C8 and its variants, CYP2C8*3 and CYP2C8 P404A[J]. Pharmacology & Toxicology, 2002, 91(4): 174-178
    Takai S, Oda S, Tsuneyama K, et al. Establishment of a mouse model for amiodarone-induced liver injury and analyses of its hepatotoxic mechanism[J]. Journal of Applied Toxicology, 2016, 36(1): 35-47
    Lee G R. The balance of Th17 versus Treg cells in autoimmunity[J]. International Journal of Molecular Sciences, 2018, 19(3): 730
    Guillot A, Tacke F. Liver macrophages: Old dogmas and new insights[J]. Hepatology Communications, 2019, 3(6): 730-743
    Elsegood C L, Chan C W, Degli-Esposti M A, et al. Kupffer cell-monocyte communication is essential for initiating murine liver progenitor cell-mediated liver regeneration[J]. Hepatology, 2015, 62(4): 1272-1284
    Castro G, Liu X J, Ngo K, et al. RORγt and RORα signature genes in human Th17 cells[J]. PLoS One, 2017, 12(8): e0181868
    Ciofani M, Madar A, Galan C, et al. A validated regulatory network for Th17 cell specification[J]. Cell, 2012, 151(2): 289-303
    Kocak M Z. Oral amiodarone-induced liver injury, especially gamma glutamyl transferase elevation: A case report[J]. Eurasian Journal of Medicine and Oncology, 2017, 2: 2
    Guigui B, Perrot S, Berry J P, et al. Amiodarone-induced hepatic phospholipidosis: A morphological alteration independent of pseudoalcoholic liver disease[J]. Hepatology, 1988, 8(5): 1063-1068
    Nguyen C L, Markey K A, Miltiadous O, et al. High-resolution analyses of associations between medications, microbiome, and mortality in cancer patients[J]. Cell, 2023, 186(12): 2705-2718.e17
  • 加载中
计量
  • 文章访问数:  1102
  • HTML全文浏览数:  1102
  • PDF下载数:  168
  • 施引文献:  0
出版历程
  • 收稿日期:  2023-10-10
高玉婷, 毛大庆, 夏大胜, 罗义. 胺碘酮通过诱发免疫紊乱加剧小鼠肝毒性[J]. 生态毒理学报, 2024, 19(1): 54-64. doi: 10.7524/AJE.1673-5897.20231010001
引用本文: 高玉婷, 毛大庆, 夏大胜, 罗义. 胺碘酮通过诱发免疫紊乱加剧小鼠肝毒性[J]. 生态毒理学报, 2024, 19(1): 54-64. doi: 10.7524/AJE.1673-5897.20231010001
Gao Yuting, Mao Daqing, Xia Dasheng, Luo Yi. Amiodarone Aggravates Liver Toxicity in Mice by Inducing Immune Dysregulation[J]. Asian journal of ecotoxicology, 2024, 19(1): 54-64. doi: 10.7524/AJE.1673-5897.20231010001
Citation: Gao Yuting, Mao Daqing, Xia Dasheng, Luo Yi. Amiodarone Aggravates Liver Toxicity in Mice by Inducing Immune Dysregulation[J]. Asian journal of ecotoxicology, 2024, 19(1): 54-64. doi: 10.7524/AJE.1673-5897.20231010001

胺碘酮通过诱发免疫紊乱加剧小鼠肝毒性

    通讯作者: 毛大庆,E-mail: maodq@nankai.edu.cn;  罗义,E-mail: luoy@nankai.edu.cn
    作者简介: 高玉婷(1992-),女,博士研究生,研究方向为人体肠道微生态,E-mail:gaoyt2620@mail.nankai.edu.cn
  • 1. 南开大学环境科学与工程学院, 天津 300350;
  • 2. 南开大学医学院, 天津 300071;
  • 3. 南开大学附属天津市第一中心医院, 天津 300192;
  • 4. 南京大学环境学院, 污染控制与资源化国家重点实验室, 南京 210093
基金项目:

国家自然科学基金重点项目(41831287);国家自然科学基金面上项目(42077382)

摘要: 胺碘酮(amiodarone)是临床上广泛使用的第三类抗心律失常药物,临床研究已经发现长期服用胺碘酮会对人体造成副作用,包括肝毒性。鉴于人体与共生微生物形成了一个复杂的共生生态系统,口服胺碘酮对机体的影响,从药物吸收到直接或间接的药物作用,反映了药物与机体以及共生生态系统相互作用的结果。然而,胺碘酮对肝功能的影响及其潜在机制仍然知之甚少。本研究为探讨胺碘酮对肝脏的影响,建立了胺碘酮诱导小鼠模型,采用Lieber-Decarli液体饲料,分别设置200 mg·kg-1的低剂量组和600 mg·kg-1的高剂量组。研究发现胺碘酮处理28 d后,诱发小鼠肝脏转录谱发生改变,与对照组相比,胺碘酮处理组有1 634个差异基因表达显著变化,差异基因富集的KEGG信号通路包括PPAR信号通路、脂肪酸代谢信号通路、胆汁酸分泌、代谢外源物质的细胞色素P450信号通路等。此外,胺碘酮处理组肝脏结构和功能受到损伤,组织病理学分析显示肝脏出现微泡型脂肪肝,脂质新生相关的基因AcacaFasnSrebf1表达上调。血清生化检测结果表明丙氨酸氨基转移酶(ALT)和天冬氨酸氨基转移酶(AST)水平升高,并有浓度依赖性。进一步研究发现胺碘酮引起小鼠肝脏免疫紊乱,促发Th17细胞和Th1细胞比例上调,相应的炎症因子TNF-αTGF-β1IL-17等也显著增加。胺碘酮也诱发脾脏Treg细胞比例下调,CD8阳性细胞比例上调。由此可知,胺碘酮可以诱导小鼠肝脏转录组发生改变,同时造成肝毒性,诱发小鼠自身免疫紊乱,进一步引发炎症反应。

English Abstract

参考文献 (46)

返回顶部

目录

/

返回文章
返回