三氯生和三氯卡班对稀有鮈鲫长期暴露及不同发育阶段毒性效应的研究

张瑛, 陈晓倩, 杨婧. 三氯生和三氯卡班对稀有鮈鲫长期暴露及不同发育阶段毒性效应的研究[J]. 生态毒理学报, 2024, 19(3): 319-330. doi: 10.7524/AJE.1673-5897.20240119003
引用本文: 张瑛, 陈晓倩, 杨婧. 三氯生和三氯卡班对稀有鮈鲫长期暴露及不同发育阶段毒性效应的研究[J]. 生态毒理学报, 2024, 19(3): 319-330. doi: 10.7524/AJE.1673-5897.20240119003
Zhang Ying, Chen Xiaoqian, Yang Jing. Toxic Effects of Triclosan and Triclocarban on Gobiocypris rarus at Various Developmental Stages during Long-term Exposure[J]. Asian journal of ecotoxicology, 2024, 19(3): 319-330. doi: 10.7524/AJE.1673-5897.20240119003
Citation: Zhang Ying, Chen Xiaoqian, Yang Jing. Toxic Effects of Triclosan and Triclocarban on Gobiocypris rarus at Various Developmental Stages during Long-term Exposure[J]. Asian journal of ecotoxicology, 2024, 19(3): 319-330. doi: 10.7524/AJE.1673-5897.20240119003

三氯生和三氯卡班对稀有鮈鲫长期暴露及不同发育阶段毒性效应的研究

    作者简介: 张瑛(1986—),女,学士,研究方向为生态毒理学,E-mail: zhangy@apm.sh.cn
    通讯作者: 陈晓倩(1975—),女,学士,实验室副主任,高级工程师,主要研究方向为新兴有机污染物的生态毒理学研究及其标准化研究。E-mail:chenxq@apm.sh.cn; 
  • 基金项目:

    国家重点研发计划课题(2023YFC3905305)

  • 中图分类号: X171.5

Toxic Effects of Triclosan and Triclocarban on Gobiocypris rarus at Various Developmental Stages during Long-term Exposure

    Corresponding author: Chen Xiaoqian, chenxq@apm.sh.cn
  • Fund Project:
  • 摘要: 三氯生(triclosan, TCS)和三氯卡班(triclocarban, TCC)是2种高效广谱抗菌剂,均具有胚胎毒性、内分泌干扰性和生殖毒性,并可能引发癌症、DNA损伤和不良妊娠结局等,是目前一类广泛关注的新污染物。美国食品与药品监督管理局(US FDA)于2016年已禁止含有TCS和TCC等抑菌剂的非处方抗菌洗浴产品进入市场,而目前在我国其为化妆品准用防腐剂,允许限量使用,且皂类产品不在限制范围内。TCS和TCC作为新兴的外源性化学污染物能够随生活污水的排放进入自然环境,对我国本土水生生物、生态安全和人身健康构成了潜在威胁。为探究TCS和TCC对我国本土鱼种稀有鮈鲫(Gobiocypris rarus)长期暴露及4个不同发育阶段(胚胎期、卵黄囊吸收阶段、仔鱼及幼鱼阶段)的毒性效应,本研究将稀有鮈鲫的受精卵暴露于TCS和TCC中,直至孵化后60 d(60 days post hatch, 60 dph),试验过程中监测胚胎期的孵化率,卵黄囊吸收阶段、仔鱼及幼鱼阶段的成活率,长期暴露过程中的生长情况、性分化及内分泌干扰效应等多个指标。研究结果显示,在胚胎期,6.25~100 μg·L-1的TCS和0.938~15 μg·L-1的TCC对稀有鮈鲫的胚胎孵化率没有显著的毒性效应。在仔鱼阶段,6.25~100 μg·L-1的TCS和0.938~15 μg·L-1的TCC暴露组30 dph成活率的最高无可观察效应浓度分别为100 μg·L-1和0.938 μg·L-1,根据我国国家标准,TCC对水生环境的危害可判定为长期慢性类别1,而TCS由于试验中的最高浓度未达到1 mg·L-1,无法作出明确的判断,但能判断其对水生环境的危害为非长期慢性类别1。在幼鱼阶段,6.25~100 μg·L-1的TCS和0.938~15 μg·L-1的TCC均对雌性及雄性稀有鮈鲫体内卵黄蛋白原具有一定的诱导作用,但在性分化上没有显著影响。在胚后发育过程中,通过长期暴露,6.25~100 μg·L-1的TCS对稀有鮈鲫体质量有显著毒性效应,随TCS浓度的升高,稀有鮈鲫体质量逐渐降低,TCS对稀有鮈鲫体质量具有抑制作用;0.938~15 μg·L-1的TCC对稀有鮈鲫体质量及体长等生长均无显著影响。此外,研究发现稀有鮈鲫在不同发育阶段的毒性效应存在差异,稀有鮈鲫胚胎期的耐受力明显高于胚后发育阶段,卵黄囊吸收阶段及仔鱼阶段的耐受力低于幼鱼阶段。可见,当更多的生命阶段被包括在一个测试中,能够通过较少的试验动物,获得较多的毒性终点,且测试中不同生命阶段的毒性效应来自同一批试验动物,使不同生命阶段的试验结果更具可比性。
  • 加载中
  • Falisse E, Voisin A S, Silvestre F. Impacts of triclosan exposure on zebrafish early-life stage: Toxicity and acclimation mechanisms [J]. Aquatic Toxicology, 2017, 189: 97-107
    Shi Q M, Zhuang Y H, Hu T T, et al. Developmental toxicity of triclocarban in zebrafish (Danio rerio) embryos [J]. Journal of Biochemical and Molecular Toxicology, 2019, 33(5): e22289
    Wei J J, Zhou T, Hu Z Y, et al. Effects of triclocarban on oxidative stress and innate immune response in zebrafish embryos [J]. Chemosphere, 2018, 210: 93-101
    Liu F, Zhang Y, Wang F. Environmental relevant concentrations of triclosan affected developmental toxicity, oxidative stress, and apoptosis in zebrafish embryos [J]. Environmental Toxicology, 2022, 37(4): 848-857
    Anderson S E, Franko J, Kashon M L, et al. Exposure to triclosan augments the allergic response to ovalbumin in a mouse model of asthma [J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2013, 132(1): 96-106
    James M O, Li W J, Summerlot D P, et al. Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta [J]. Environment International, 2010, 36(8): 942-949
    Paul K B, Hedge J M, Devito M J, et al. Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats [J]. Environmental Toxicology and Chemistry, 2010, 29(12): 2840-2844
    Rodríguez P E A, Sanchez M S. Maternal exposure to triclosan impairs thyroid homeostasis and female pubertal development in Wistar rat offspring [J]. Journal of Toxicology and Environmental Health Part A, 2010, 73(24): 1678-1688
    Witorsch R J. Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products [J]. Critical Reviews in Toxicology, 2014, 44(6): 535-555
    Zorrilla L M, Gibson E K, Jeffay S C, et al. The effects of triclosan on puberty and thyroid hormones in male Wistar rats [J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2009, 107(1): 56-64
    Costa N O, Forcato S, Cavichioli A M, et al. In utero and lactational exposure to triclocarban: Age-associated changes in reproductive parameters of male rat offspring [J]. Toxicology and Applied Pharmacology, 2020, 401: 115077
    Raj S, Singh S S, Singh S P, et al. Evaluation of triclosan-induced reproductive impairments in the accessory reproductive organs and sperm indices in the mice [J]. Acta Histochemica, 2021, 123(5): 151744
    Kim J Y, Yi B R, Go R E, et al. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway [J]. Environmental Toxicology and Pharmacology, 2014, 37(3): 1264-1274
    Sood S. Ability of triclocarban (3,4,4’-trichlorocarbanilide) to induce premalignant breast cell carcinogenesis and enhance 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP)-induced breast cell carcinogenesis [D]. Knoxville: University of Tennessee, 2013: 1-171
    李林朋, 马慧敏, 胡俊杰, 等. 三氯生和三氯卡班对人体肝细胞DNA损伤的研究[J]. 生态环境学报, 2010, 19(12): 2897-2901

    Li L P, Ma H M, Hu J J, et al. The genotoxicity of triclosan and triclocarban in human hepatocyte LO2 cell [J]. Ecology and Environmental Sciences, 2010, 19(12): 2897-2901(in Chinese)

    Axelstad M, Boberg J, Vinggaard A M, et al. Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring [J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 2013, 59: 534-540
    Han J, Won E J, Hwang U K, et al. Triclosan (TCS) and triclocarban (TCC) cause lifespan reduction and reproductive impairment through oxidative stress-mediated expression of the defensome in the monogonont rotifer (Brachionus koreanus) [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2016, 185/186: 131-137
    Kennedy R C, Menn F M, Healy L, et al. Early life triclocarban exposure during lactation affects neonate rat survival [J]. Reproductive Sciences, 2015, 22(1): 75-89
    Pycke B F, Geer L A, Dalloul M, et al. Human fetal exposure to triclosan and triclocarban in an urban population from Brooklyn, New York [J]. Environmental Science & Technology, 2014, 48(15): 8831-8838
    Peng X Z, Yu Y Y, Tang C M, et al. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China [J]. The Science of the Total Environment, 2008, 397(1/3): 158-166
    Wu J L, Lam N P, Martens D, et al. Triclosan determination in water related to wastewater treatment [J]. Talanta, 2007, 72(5): 1650-1654
    Zhao J L, Zhang Q Q, Chen F, et al. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: Implications for controlling of urban domestic sewage discharge [J]. Water Research, 2013, 47(1): 395-405
    刘畅伶, 张文强, 单保庆. 珠江口典型河段内分泌干扰物的空间分布及风险评价[J]. 环境科学学报, 2018, 38(1): 115-124

    Liu C L, Zhang W Q, Shan B Q. Spatial distribution and risk assessment of endocrine disrupting chemicals in the typical station of Pearl River [J]. Acta Scientiae Circumstantiae, 2018, 38(1): 115-124(in Chinese)

    吕敏, 孙倩, 李妍, 等. 固相萃取-高效液相色谱-串联质谱测定九龙江流域水中药品和个人护理用品[J]. 厦门大学学报(自然科学版), 2012, 51(6): 1047-1053 Lyu M, Sun Q, Li Y, et al. Determination of pharmaceuticals and personal care products in Jiulong River by solid phase extraction and high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Xiamen University (Natural Science), 2012, 51(6): 1047-1053(in Chinese)
    孙静, 赵汝松, 王霞, 等. 液液萃取-HPLC-ESI-MS法同步测定环境水样中的三氯卡班和三氯生[J]. 山东轻工业学院学报(自然科学版), 2011, 25(1): 35-37 Sun J, Zhao R S, Wang X, et al. Simultaneous determination of triclosan and triclocarban in environmental water samples by liquid extraction combined with HPLC-ESI-MS [J]. Journal of Shandong Institute of Light Industry (Natural Science Edition), 2011, 25(1): 35-37(in Chinese)
    王绿平, 张京佶, 赵华清. 稀有鮈鲫作为鱼类胚胎急性毒性试验受试鱼种的敏感性研究[J]. 生态毒理学报, 2021, 16(5): 102-112

    Wang L P, Zhang J J, Zhao H Q. Sensitivity of Chinese rare minnows (Gobiocypris rarus) for fish embryo acute toxicity test [J]. Asian Journal of Ecotoxicology, 2021, 16(5): 102-112(in Chinese)

    Zhou S B, Chen Q Q, di Paolo C, et al. Behavioral profile alterations in zebrafish larvae exposed to environmentally relevant concentrations of eight priority pharmaceuticals [J]. The Science of the Total Environment, 2019, 664: 89-98
    徐关金, 徐善良, 王丹丽. 竹醋液对花鲈胚胎及仔鱼存活率的影响[C]// 中国水产学会海水养殖分会. 2008年全国海水养殖学术研讨会论文集. 舟山: 中国水产学会海水养殖分会, 2008: 281-287
    周志诚. 斑马鱼繁殖生物学与α2ML基因表达型式初步研究[D]. 湛江: 广东海洋大学, 2015: 1-63 Zhou Z C. Preliminary study on biology of reproduction and α2ML gene expressive type of zebrafish [D]. Zhanjiang Guangdong Ocean University, 2015

    : 1-63(in Chinese)

    何锦. 三氯生对斑马鱼性别分化和生殖系统的影响及其机制研究[D]. 镇江: 江苏大学, 2023: 1-80
    高铭. 三氯卡班长期暴露下对斑马鱼内分泌系统及子代生长发育的影响[D]. 重庆: 西南大学, 2021: 1-57 Gao M. Effects of long-term exposure to triclocarban on endocrine system and offspring development in zebrafish [D]. Chongqing: Southwest University, 2021: 1

    -57(in Chinese)

    马鹏程. 环境剂量三氯生对斑马鱼甲状腺轴及氧化应激毒性影响研究[D]. 锦州: 锦州医科大学, 2017: 1-63 Ma P C. Effects of environmental dose of TCS on thyroid axis and oxidative stress toxicity of zebrafish [D]. Jinzhou: Jinzhou Medical University, 2017: 1

    -63(in Chinese)

    王剑伟, 宋天祥, 曹文宣. 稀有鮈鲫胚后发育和幼鱼生长的初步研究[J]. 水生生物学报, 1998, 22(2): 128-134

    Wang J W, Song T X, Cao W X. Postembryonic development and growth of cultured rare minnow, Gobiocypris rarus [J]. Acta Hydrobiologica Sinica, 1998, 22(2): 128-134(in Chinese)

    European Chemicals Agency (ECHA). Chemicals database: Triclosan [EB/OL]. [2024-02-27]. https://echa.europa.eu/registration-dossier/-/registered-dossier/12675/6/2/1
    European Chemicals Agency (ECHA). Chemicals database: Triclocarban [EB/OL]. [2024-02-27].https://echa.europa.eu/registration-dossier/-/registered-dossier/12075/6/2/1
    Yang L H, Ying G G, Su H C, et al. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata [J]. Environmental Toxicology and Chemistry, 2008, 27(5): 1201-1208
    Gao L, Yuan T, Cheng P, et al. Effects of triclosan and triclocarban on the growth inhibition, cell viability, genotoxicity and multixenobiotic resistance responses of Tetrahymena thermophila [J]. Chemosphere, 2015, 139: 434-440
    Xu X L, Lu Y, Zhang D Y, et al. Toxic assessment of triclosan and triclocarban on Artemia salina [J]. Bulletin of Environmental Contamination and Toxicology, 2015, 95(6): 728-733
    Tamura I, Kagota K, Yasuda Y, et al. Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: Triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol [J]. Journal of Applied Toxicology, 2013, 33(11): 1222-1229
    王永明. 稀有鮈鲫受精生物学研究[D]. 重庆: 西南大学, 2011: 1-79 Wang Y M. Studies on the fertilization biology of Gobiocypris rarus [D]. Chongqing: Southwest University, 2011: 1

    -79(in Chinese)

    Hamm J T, Ceger P, Allen D, et al. Characterizing sources of variability in zebrafish embryo screening protocols [J]. ALTEX, 2019, 36(1): 103-120
  • 加载中
计量
  • 文章访问数:  1271
  • HTML全文浏览数:  1271
  • PDF下载数:  103
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-01-19
张瑛, 陈晓倩, 杨婧. 三氯生和三氯卡班对稀有鮈鲫长期暴露及不同发育阶段毒性效应的研究[J]. 生态毒理学报, 2024, 19(3): 319-330. doi: 10.7524/AJE.1673-5897.20240119003
引用本文: 张瑛, 陈晓倩, 杨婧. 三氯生和三氯卡班对稀有鮈鲫长期暴露及不同发育阶段毒性效应的研究[J]. 生态毒理学报, 2024, 19(3): 319-330. doi: 10.7524/AJE.1673-5897.20240119003
Zhang Ying, Chen Xiaoqian, Yang Jing. Toxic Effects of Triclosan and Triclocarban on Gobiocypris rarus at Various Developmental Stages during Long-term Exposure[J]. Asian journal of ecotoxicology, 2024, 19(3): 319-330. doi: 10.7524/AJE.1673-5897.20240119003
Citation: Zhang Ying, Chen Xiaoqian, Yang Jing. Toxic Effects of Triclosan and Triclocarban on Gobiocypris rarus at Various Developmental Stages during Long-term Exposure[J]. Asian journal of ecotoxicology, 2024, 19(3): 319-330. doi: 10.7524/AJE.1673-5897.20240119003

三氯生和三氯卡班对稀有鮈鲫长期暴露及不同发育阶段毒性效应的研究

    通讯作者: 陈晓倩(1975—),女,学士,实验室副主任,高级工程师,主要研究方向为新兴有机污染物的生态毒理学研究及其标准化研究。E-mail:chenxq@apm.sh.cn; 
    作者简介: 张瑛(1986—),女,学士,研究方向为生态毒理学,E-mail: zhangy@apm.sh.cn
  • 上海市检测中心, 上海 201203
基金项目:

国家重点研发计划课题(2023YFC3905305)

摘要: 三氯生(triclosan, TCS)和三氯卡班(triclocarban, TCC)是2种高效广谱抗菌剂,均具有胚胎毒性、内分泌干扰性和生殖毒性,并可能引发癌症、DNA损伤和不良妊娠结局等,是目前一类广泛关注的新污染物。美国食品与药品监督管理局(US FDA)于2016年已禁止含有TCS和TCC等抑菌剂的非处方抗菌洗浴产品进入市场,而目前在我国其为化妆品准用防腐剂,允许限量使用,且皂类产品不在限制范围内。TCS和TCC作为新兴的外源性化学污染物能够随生活污水的排放进入自然环境,对我国本土水生生物、生态安全和人身健康构成了潜在威胁。为探究TCS和TCC对我国本土鱼种稀有鮈鲫(Gobiocypris rarus)长期暴露及4个不同发育阶段(胚胎期、卵黄囊吸收阶段、仔鱼及幼鱼阶段)的毒性效应,本研究将稀有鮈鲫的受精卵暴露于TCS和TCC中,直至孵化后60 d(60 days post hatch, 60 dph),试验过程中监测胚胎期的孵化率,卵黄囊吸收阶段、仔鱼及幼鱼阶段的成活率,长期暴露过程中的生长情况、性分化及内分泌干扰效应等多个指标。研究结果显示,在胚胎期,6.25~100 μg·L-1的TCS和0.938~15 μg·L-1的TCC对稀有鮈鲫的胚胎孵化率没有显著的毒性效应。在仔鱼阶段,6.25~100 μg·L-1的TCS和0.938~15 μg·L-1的TCC暴露组30 dph成活率的最高无可观察效应浓度分别为100 μg·L-1和0.938 μg·L-1,根据我国国家标准,TCC对水生环境的危害可判定为长期慢性类别1,而TCS由于试验中的最高浓度未达到1 mg·L-1,无法作出明确的判断,但能判断其对水生环境的危害为非长期慢性类别1。在幼鱼阶段,6.25~100 μg·L-1的TCS和0.938~15 μg·L-1的TCC均对雌性及雄性稀有鮈鲫体内卵黄蛋白原具有一定的诱导作用,但在性分化上没有显著影响。在胚后发育过程中,通过长期暴露,6.25~100 μg·L-1的TCS对稀有鮈鲫体质量有显著毒性效应,随TCS浓度的升高,稀有鮈鲫体质量逐渐降低,TCS对稀有鮈鲫体质量具有抑制作用;0.938~15 μg·L-1的TCC对稀有鮈鲫体质量及体长等生长均无显著影响。此外,研究发现稀有鮈鲫在不同发育阶段的毒性效应存在差异,稀有鮈鲫胚胎期的耐受力明显高于胚后发育阶段,卵黄囊吸收阶段及仔鱼阶段的耐受力低于幼鱼阶段。可见,当更多的生命阶段被包括在一个测试中,能够通过较少的试验动物,获得较多的毒性终点,且测试中不同生命阶段的毒性效应来自同一批试验动物,使不同生命阶段的试验结果更具可比性。

English Abstract

参考文献 (41)

返回顶部

目录

/

返回文章
返回