三氯生和三氯卡班对稀有鮈鲫长期暴露及不同发育阶段毒性效应的研究
Toxic Effects of Triclosan and Triclocarban on Gobiocypris rarus at Various Developmental Stages during Long-term Exposure
-
摘要: 三氯生(triclosan, TCS)和三氯卡班(triclocarban, TCC)是2种高效广谱抗菌剂,均具有胚胎毒性、内分泌干扰性和生殖毒性,并可能引发癌症、DNA损伤和不良妊娠结局等,是目前一类广泛关注的新污染物。美国食品与药品监督管理局(US FDA)于2016年已禁止含有TCS和TCC等抑菌剂的非处方抗菌洗浴产品进入市场,而目前在我国其为化妆品准用防腐剂,允许限量使用,且皂类产品不在限制范围内。TCS和TCC作为新兴的外源性化学污染物能够随生活污水的排放进入自然环境,对我国本土水生生物、生态安全和人身健康构成了潜在威胁。为探究TCS和TCC对我国本土鱼种稀有鮈鲫(Gobiocypris rarus)长期暴露及4个不同发育阶段(胚胎期、卵黄囊吸收阶段、仔鱼及幼鱼阶段)的毒性效应,本研究将稀有鮈鲫的受精卵暴露于TCS和TCC中,直至孵化后60 d(60 days post hatch, 60 dph),试验过程中监测胚胎期的孵化率,卵黄囊吸收阶段、仔鱼及幼鱼阶段的成活率,长期暴露过程中的生长情况、性分化及内分泌干扰效应等多个指标。研究结果显示,在胚胎期,6.25~100 μg·L-1的TCS和0.938~15 μg·L-1的TCC对稀有鮈鲫的胚胎孵化率没有显著的毒性效应。在仔鱼阶段,6.25~100 μg·L-1的TCS和0.938~15 μg·L-1的TCC暴露组30 dph成活率的最高无可观察效应浓度分别为100 μg·L-1和0.938 μg·L-1,根据我国国家标准,TCC对水生环境的危害可判定为长期慢性类别1,而TCS由于试验中的最高浓度未达到1 mg·L-1,无法作出明确的判断,但能判断其对水生环境的危害为非长期慢性类别1。在幼鱼阶段,6.25~100 μg·L-1的TCS和0.938~15 μg·L-1的TCC均对雌性及雄性稀有鮈鲫体内卵黄蛋白原具有一定的诱导作用,但在性分化上没有显著影响。在胚后发育过程中,通过长期暴露,6.25~100 μg·L-1的TCS对稀有鮈鲫体质量有显著毒性效应,随TCS浓度的升高,稀有鮈鲫体质量逐渐降低,TCS对稀有鮈鲫体质量具有抑制作用;0.938~15 μg·L-1的TCC对稀有鮈鲫体质量及体长等生长均无显著影响。此外,研究发现稀有鮈鲫在不同发育阶段的毒性效应存在差异,稀有鮈鲫胚胎期的耐受力明显高于胚后发育阶段,卵黄囊吸收阶段及仔鱼阶段的耐受力低于幼鱼阶段。可见,当更多的生命阶段被包括在一个测试中,能够通过较少的试验动物,获得较多的毒性终点,且测试中不同生命阶段的毒性效应来自同一批试验动物,使不同生命阶段的试验结果更具可比性。Abstract: Triclosan (TCS) and triclocarban (TCC) are two highly effective broad-spectrum antimicrobial agents having embryo toxicity, endocrine disruption, and reproductive toxicity. These two chemicals are presently emerging pollutants of wide concerns and may cause cancer, DNA damage, and adverse pregnancy outcomes. In 2016, the US Food and Drug Administration (US FDA) has banned market entry of the over-the-counter antibacterial bath products containing antibacterial agents such as TCS and TCC. In China, however, TCS and TCC are still allowed to be used in a limited quantity as quasi-preservatives for cosmetics, and are not restricted for soap products. As emerging exogenous chemical pollutants, TCS and TCC can enter the natural environment with domestic wastewater and pose potential threats to local aquatic lives, ecological security and human health. In order to investigate the toxic effects of TCS and TCC on the long-term exposure and four different developmental stages (i.e., embryo, yolk sac absorption, larval, and juvenile stages) of the Chinese native fish species of Gobiocypris rarus (GR), the fertilized eggs of GR were exposed to TCS and TCC until 60 days post hatching (60 dph) in this study. The results showed that TCS and TCC in the ranges of 6.25~100 μg·L-1 and 0.938~15 μg·L-1, respectively, had no significant toxic effects on the embryo hatchability of GR. In the larval stage, the no observed effect concentration (NOEC) of the 30 dph survival rate in the exposure groups of 6.25~100 μg·L-1 TCS and 0.938~15 μg·L-1 TCC were 100 μg·L-1 and 0.938 μg·L-1, respectively. According to the national standards of China, the hazards of TCC to the aquatic environment were classified as long-term chronic category 1. In contrast, it is impossible to make a clear judgment for TCS because its maximum testing concentration did not reach 1 mg·L-1, but the hazards of TCS to the aquatic environment can be judged as the non-long-term chronic category 1. At the juvenile stage, TCS (6.25~100 μg·L-1) and TCC (0.938~15 μg·L-1) could induce vitellogenin in both females and males of GR, but did not affect sexual differentiation. During the postembryonic development, TCS of 6.25~100 μg·L-1 could significantly affect the fish body weight, which gradually decreased with increasing TCS concentration, indicating that TCS could inhibit the body weight of GR. TCC of 0.938~15 μg·L-1 had no significant effect on the fish body weight and body length. In addition, it was found that the toxic effects on the different developmental stages of GR were different. The tolerance of GR at embryonic stage was significantly higher than that at postembryonic development stage, while the tolerance at yolk sac absorption stage and larvae stage was lower than that at the juvenile stage. Therefore, when more of these life stages are included in a test, more toxicity endpoints can be obtained by fewer test animals. Moreover, the toxic effects of different life stages in the tests are all from the same batch of the test animals, making the test results of different life stages more comparable.
-
Key words:
- triclosan /
- triclocarban /
- Gobiocypris rarus /
- toxic effects /
- long-term exposure /
- different developmental stages
-
-
Falisse E, Voisin A S, Silvestre F. Impacts of triclosan exposure on zebrafish early-life stage: Toxicity and acclimation mechanisms [J]. Aquatic Toxicology, 2017, 189: 97-107 Shi Q M, Zhuang Y H, Hu T T, et al. Developmental toxicity of triclocarban in zebrafish (Danio rerio) embryos [J]. Journal of Biochemical and Molecular Toxicology, 2019, 33(5): e22289 Wei J J, Zhou T, Hu Z Y, et al. Effects of triclocarban on oxidative stress and innate immune response in zebrafish embryos [J]. Chemosphere, 2018, 210: 93-101 Liu F, Zhang Y, Wang F. Environmental relevant concentrations of triclosan affected developmental toxicity, oxidative stress, and apoptosis in zebrafish embryos [J]. Environmental Toxicology, 2022, 37(4): 848-857 Anderson S E, Franko J, Kashon M L, et al. Exposure to triclosan augments the allergic response to ovalbumin in a mouse model of asthma [J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2013, 132(1): 96-106 James M O, Li W J, Summerlot D P, et al. Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta [J]. Environment International, 2010, 36(8): 942-949 Paul K B, Hedge J M, Devito M J, et al. Developmental triclosan exposure decreases maternal and neonatal thyroxine in rats [J]. Environmental Toxicology and Chemistry, 2010, 29(12): 2840-2844 Rodríguez P E A, Sanchez M S. Maternal exposure to triclosan impairs thyroid homeostasis and female pubertal development in Wistar rat offspring [J]. Journal of Toxicology and Environmental Health Part A, 2010, 73(24): 1678-1688 Witorsch R J. Critical analysis of endocrine disruptive activity of triclosan and its relevance to human exposure through the use of personal care products [J]. Critical Reviews in Toxicology, 2014, 44(6): 535-555 Zorrilla L M, Gibson E K, Jeffay S C, et al. The effects of triclosan on puberty and thyroid hormones in male Wistar rats [J]. Toxicological Sciences: An Official Journal of the Society of Toxicology, 2009, 107(1): 56-64 Costa N O, Forcato S, Cavichioli A M, et al. In utero and lactational exposure to triclocarban: Age-associated changes in reproductive parameters of male rat offspring [J]. Toxicology and Applied Pharmacology, 2020, 401: 115077 Raj S, Singh S S, Singh S P, et al. Evaluation of triclosan-induced reproductive impairments in the accessory reproductive organs and sperm indices in the mice [J]. Acta Histochemica, 2021, 123(5): 151744 Kim J Y, Yi B R, Go R E, et al. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway [J]. Environmental Toxicology and Pharmacology, 2014, 37(3): 1264-1274 Sood S. Ability of triclocarban (3,4,4’-trichlorocarbanilide) to induce premalignant breast cell carcinogenesis and enhance 2-amino-1-methyl-6-phenylimidazo(4,5-b)pyridine (PhIP)-induced breast cell carcinogenesis [D]. Knoxville: University of Tennessee, 2013: 1-171 李林朋, 马慧敏, 胡俊杰, 等. 三氯生和三氯卡班对人体肝细胞DNA损伤的研究[J]. 生态环境学报, 2010, 19(12): 2897-2901 Li L P, Ma H M, Hu J J, et al. The genotoxicity of triclosan and triclocarban in human hepatocyte LO2 cell [J]. Ecology and Environmental Sciences, 2010, 19(12): 2897-2901(in Chinese)
Axelstad M, Boberg J, Vinggaard A M, et al. Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring [J]. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 2013, 59: 534-540 Han J, Won E J, Hwang U K, et al. Triclosan (TCS) and triclocarban (TCC) cause lifespan reduction and reproductive impairment through oxidative stress-mediated expression of the defensome in the monogonont rotifer (Brachionus koreanus) [J]. Comparative Biochemistry and Physiology Toxicology & Pharmacology, 2016, 185/186: 131-137 Kennedy R C, Menn F M, Healy L, et al. Early life triclocarban exposure during lactation affects neonate rat survival [J]. Reproductive Sciences, 2015, 22(1): 75-89 Pycke B F, Geer L A, Dalloul M, et al. Human fetal exposure to triclosan and triclocarban in an urban population from Brooklyn, New York [J]. Environmental Science & Technology, 2014, 48(15): 8831-8838 Peng X Z, Yu Y Y, Tang C M, et al. Occurrence of steroid estrogens, endocrine-disrupting phenols, and acid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China [J]. The Science of the Total Environment, 2008, 397(1/3): 158-166 Wu J L, Lam N P, Martens D, et al. Triclosan determination in water related to wastewater treatment [J]. Talanta, 2007, 72(5): 1650-1654 Zhao J L, Zhang Q Q, Chen F, et al. Evaluation of triclosan and triclocarban at river basin scale using monitoring and modeling tools: Implications for controlling of urban domestic sewage discharge [J]. Water Research, 2013, 47(1): 395-405 刘畅伶, 张文强, 单保庆. 珠江口典型河段内分泌干扰物的空间分布及风险评价[J]. 环境科学学报, 2018, 38(1): 115-124 Liu C L, Zhang W Q, Shan B Q. Spatial distribution and risk assessment of endocrine disrupting chemicals in the typical station of Pearl River [J]. Acta Scientiae Circumstantiae, 2018, 38(1): 115-124(in Chinese)
吕敏, 孙倩, 李妍, 等. 固相萃取-高效液相色谱-串联质谱测定九龙江流域水中药品和个人护理用品[J]. 厦门大学学报(自然科学版), 2012, 51(6): 1047-1053 Lyu M, Sun Q, Li Y, et al. Determination of pharmaceuticals and personal care products in Jiulong River by solid phase extraction and high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Xiamen University (Natural Science), 2012, 51(6): 1047-1053(in Chinese) 孙静, 赵汝松, 王霞, 等. 液液萃取-HPLC-ESI-MS法同步测定环境水样中的三氯卡班和三氯生[J]. 山东轻工业学院学报(自然科学版), 2011, 25(1): 35-37 Sun J, Zhao R S, Wang X, et al. Simultaneous determination of triclosan and triclocarban in environmental water samples by liquid extraction combined with HPLC-ESI-MS [J]. Journal of Shandong Institute of Light Industry (Natural Science Edition), 2011, 25(1): 35-37(in Chinese) 王绿平, 张京佶, 赵华清. 稀有鮈鲫作为鱼类胚胎急性毒性试验受试鱼种的敏感性研究[J]. 生态毒理学报, 2021, 16(5): 102-112 Wang L P, Zhang J J, Zhao H Q. Sensitivity of Chinese rare minnows (Gobiocypris rarus) for fish embryo acute toxicity test [J]. Asian Journal of Ecotoxicology, 2021, 16(5): 102-112(in Chinese)
Zhou S B, Chen Q Q, di Paolo C, et al. Behavioral profile alterations in zebrafish larvae exposed to environmentally relevant concentrations of eight priority pharmaceuticals [J]. The Science of the Total Environment, 2019, 664: 89-98 徐关金, 徐善良, 王丹丽. 竹醋液对花鲈胚胎及仔鱼存活率的影响[C]// 中国水产学会海水养殖分会. 2008年全国海水养殖学术研讨会论文集. 舟山: 中国水产学会海水养殖分会, 2008: 281-287 周志诚. 斑马鱼繁殖生物学与α2ML基因表达型式初步研究[D]. 湛江: 广东海洋大学, 2015: 1-63 Zhou Z C. Preliminary study on biology of reproduction and α2ML gene expressive type of zebrafish [D]. Zhanjiang Guangdong Ocean University, 2015 : 1-63(in Chinese)
何锦. 三氯生对斑马鱼性别分化和生殖系统的影响及其机制研究[D]. 镇江: 江苏大学, 2023: 1-80 高铭. 三氯卡班长期暴露下对斑马鱼内分泌系统及子代生长发育的影响[D]. 重庆: 西南大学, 2021: 1-57 Gao M. Effects of long-term exposure to triclocarban on endocrine system and offspring development in zebrafish [D]. Chongqing: Southwest University, 2021: 1 -57(in Chinese)
马鹏程. 环境剂量三氯生对斑马鱼甲状腺轴及氧化应激毒性影响研究[D]. 锦州: 锦州医科大学, 2017: 1-63 Ma P C. Effects of environmental dose of TCS on thyroid axis and oxidative stress toxicity of zebrafish [D]. Jinzhou: Jinzhou Medical University, 2017: 1 -63(in Chinese)
王剑伟, 宋天祥, 曹文宣. 稀有鮈鲫胚后发育和幼鱼生长的初步研究[J]. 水生生物学报, 1998, 22(2): 128-134 Wang J W, Song T X, Cao W X. Postembryonic development and growth of cultured rare minnow, Gobiocypris rarus [J]. Acta Hydrobiologica Sinica, 1998, 22(2): 128-134(in Chinese)
European Chemicals Agency (ECHA). Chemicals database: Triclosan [EB/OL]. [2024-02-27]. https://echa.europa.eu/registration-dossier/-/registered-dossier/12675/6/2/1 European Chemicals Agency (ECHA). Chemicals database: Triclocarban [EB/OL]. [2024-02-27].https://echa.europa.eu/registration-dossier/-/registered-dossier/12075/6/2/1 Yang L H, Ying G G, Su H C, et al. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata [J]. Environmental Toxicology and Chemistry, 2008, 27(5): 1201-1208 Gao L, Yuan T, Cheng P, et al. Effects of triclosan and triclocarban on the growth inhibition, cell viability, genotoxicity and multixenobiotic resistance responses of Tetrahymena thermophila [J]. Chemosphere, 2015, 139: 434-440 Xu X L, Lu Y, Zhang D Y, et al. Toxic assessment of triclosan and triclocarban on Artemia salina [J]. Bulletin of Environmental Contamination and Toxicology, 2015, 95(6): 728-733 Tamura I, Kagota K, Yasuda Y, et al. Ecotoxicity and screening level ecotoxicological risk assessment of five antimicrobial agents: Triclosan, triclocarban, resorcinol, phenoxyethanol and p-thymol [J]. Journal of Applied Toxicology, 2013, 33(11): 1222-1229 王永明. 稀有鮈鲫受精生物学研究[D]. 重庆: 西南大学, 2011: 1-79 Wang Y M. Studies on the fertilization biology of Gobiocypris rarus [D]. Chongqing: Southwest University, 2011: 1 -79(in Chinese)
Hamm J T, Ceger P, Allen D, et al. Characterizing sources of variability in zebrafish embryo screening protocols [J]. ALTEX, 2019, 36(1): 103-120 -

计量
- 文章访问数: 1271
- HTML全文浏览数: 1271
- PDF下载数: 103
- 施引文献: 0