蜡样芽孢杆菌T4对TNT的降解及耐受机制

尹茂灵, 赖金龙, 杨旭, 朱勇兵, 张宇, 赵三平. 蜡样芽孢杆菌T4对TNT的降解及耐受机制[J]. 生态毒理学报, 2024, 19(5): 309-320. doi: 10.7524/AJE.1673-5897.20240220001
引用本文: 尹茂灵, 赖金龙, 杨旭, 朱勇兵, 张宇, 赵三平. 蜡样芽孢杆菌T4对TNT的降解及耐受机制[J]. 生态毒理学报, 2024, 19(5): 309-320. doi: 10.7524/AJE.1673-5897.20240220001
Yin Maoling, Lai Jinlong, Yang Xu, Zhu Yongbing, Zhang Yu, Zhao Sanping. Analysis of TNT Degradation and Tolerance Mechanism of Bacillus cereus Strain T4[J]. Asian journal of ecotoxicology, 2024, 19(5): 309-320. doi: 10.7524/AJE.1673-5897.20240220001
Citation: Yin Maoling, Lai Jinlong, Yang Xu, Zhu Yongbing, Zhang Yu, Zhao Sanping. Analysis of TNT Degradation and Tolerance Mechanism of Bacillus cereus Strain T4[J]. Asian journal of ecotoxicology, 2024, 19(5): 309-320. doi: 10.7524/AJE.1673-5897.20240220001

蜡样芽孢杆菌T4对TNT的降解及耐受机制

    作者简介: 尹茂灵(1997-),女,硕士研究生,研究方向为环境微生物,E-mail:2834939603@qq.com
    通讯作者: 张宇,E-mail:zhangyuustc@163.com;  赵三平,E-mail:spzhao@mail.ustc.edu.cn
  • 基金项目:

    智强基金项目(ZQ2021-01);国家自然科学基金项目(22176222,22106182)

  • 中图分类号: X171.5

Analysis of TNT Degradation and Tolerance Mechanism of Bacillus cereus Strain T4

    Corresponding authors: Zhang Yu ;  Zhao Sanping
  • Fund Project:
  • 摘要: 2,4,6-三硝基甲苯(TNT)是1种硝基芳香族污染物,对人类和生态环境造成严重危害。全面了解微生物对TNT胁迫的细胞反应,对于开发合理的TNT修复技术是必要的。本研究以蜡样芽孢杆菌T4为研究对象,筛选细菌最适的生物刺激因子,分析外源营养物质刺激对细菌生长及TNT转化的影响。利用转录组和代谢组学技术,揭示微生物对TNT的降解和耐受机制。结果显示,该细菌的最适碳氮源分别为葡萄糖、酵母粉。当TNT浓度为100 mg·L-1时,培养基中葡萄糖和酵母粉浓度分别为9.08 g·L-1和0.94 g·L-1。在泥浆反应体系中接种TNT降解菌,TNT的降解率达到96.91%~97.73%。此外,共鉴定到892个差异表达基因和139个差异代谢物。组学联合分析表明,氨基酸代谢、碳水化合物代谢、能量代谢和膜转运途径参与了细菌对TNT的降解及耐受过程。
  • 加载中
  • Chatterjee S, Deb U, Datta S, et al. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation[J]. Chemosphere, 2017, 184: 438-451
    Kalderis D, Juhasz A L, Boopathy R, et al. Soils contaminated with explosives: Environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report)[J]. Pure and Applied Chemistry, 2011, 83(7): 1407-1484
    Lewis T A, Newcombe D A, Crawford R L. Bioremediation of soils contaminated with explosives[J]. Journal of Environmental Management, 2004, 70(4): 291-307
    Thenmozhi A, Devasena M. Remediation of 2,4,6-trinitrotoluene persistent in the environment: A review[J]. Soil and Sediment Contamination: An International Journal, 2020, 29(1): 1-13
    Mercimek H A, Dincer S, Guzeldag G, et al. Degradation of 2,4,6-trinitrotoluene by P. aeruginosa and characterization of some metabolites[J]. Brazilian Journal of Microbiology, 2015, 46(1): 103-111
    Nyanhongo G S, Schroeder M, Steiner W, et al. Biodegradation of 2,4,6-trinitrotoluene (TNT): An enzymatic perspective[J]. Biocatalysis and Biotransformation, 2005, 23(2): 53-69
    Rylott E L, Lorenz A, Bruce N C. Biodegradation and biotransformation of explosives[J]. Current Opinion in Biotechnology, 2011, 22(3): 434-440
    Ding K, Byrnes C, Bridge J, et al. Surface-promoted hydrolysis of 2,4,6-trinitrotoluene and 2,4-dinitroanisole on pyrogenic carbonaceous matter[J]. Chemosphere, 2018, 197: 603-610
    Yang X, Lai J, Li J, et al. Biodegradation and physiological response mechanism of a bacterial strain to 2,4,6-trinitrotoluene contamination[J]. Chemosphere, 2021, 270: 129280
    Zhang X, Lin Y, Shan X, et al. Degradation of 2,4,6-trinitrotoluene (TNT) from explosive wastewater using nanoscale zero-valent iron[J]. Chemical Engineering Journal, 2010, 158(3): 566-570
    Serrano-González M Y, Chandra R, Castillo-Zacarias C, et al. Biotransformation and degradation of 2,4,6-trinitrotoluene by microbial metabolism and their interaction[J]. Defence Technology, 2018, 14(2): 151-164
    Bai J, Yang J, Liu P, et al. Transformation pathway of 2,4,6-trinitrotoluene by Escherichia coli nitroreductases and improvement of activity using structure-based mutagenesis[J]. Process Biochemistry, 2015, 50(5): 705-711
    Muter O, Potapova K, Limane B, et al. The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil[J]. Journal of Environmental Management, 2012, 98: 51-55
    Shin J H, Song H G. Nitroreductase Ⅱ involved in 2,4,6-trinitrotoluene degradation: Purification and characterization from Klebsiella sp. Cl[J]. The Journal of Microbiology, 2009, 47(5): 536-541
    Liao H Y, Chien C C, Tang P, et al. The integrated analysis of transcriptome and proteome for exploring the biodegradation mechanism of 2,4,6-trinitrotoluene by Citrobacter sp.[J]. Journal of Hazardous Materials, 2018, 349: 79-90
    Cabrera Ma Á, Márquez S L, Quezada C P, et al. Biotransformation of 2,4,6-trinitrotoluene by Pseudomonas sp. TNT3 isolated from Deception Island, Antarctica[J]. Environmental Pollution, 2020, 262: 113922
    Cervantes-González E, Guevara-García M A, García-Mena J, et al. Microbial diversity assessment of polychlorinated biphenyl-contaminated soils and the biostimulation and bioaugmentation processes[J]. Environmental Monitoring and Assessment, 2019, 191(2): 118
    Tripathi S, Sharma P, Chandra R. Degradation of organometallic pollutants of distillery wastewater by autochthonous bacterial community in biostimulation and bioaugmentation process[J]. Bioresource Technology, 2021, 338: 125518
    Liang S H, Hsu D W, Lin C Y, et al. Enhancement of microbial 2,4,6-trinitrotoluene transformation with increased toxicity by exogenous nutrient amendment[J]. Ecotoxicology and Environmental Safety, 2017, 138: 39-46
    Kao C M, Lin B H, Chen S C, et al. Biodegradation of trinitrotoluene (TNT) by indigenous microorganisms from TNT-contaminated soil, and their application in TNT bioremediation[J]. Bioremediation Journal, 2016, 20(3): 165-173
    Yin M, Zhao S, Lai J, et al. Oxygen-insensitive nitroreductase bacteria-mediated degradation of TNT and proteomic analysis[J]. Environmental Science and Pollution Research, 2023, 30(54): 116227-116238
    Luo L, Wang G, Wang Z, et al. Optimization of Fenton process on removing antibiotic resistance genes from excess sludge by single-factor experiment and response surface methodology[J]. Science of The Total Environment, 2021, 788: 147889
    Bolger A M, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120
    Liu J, Li G, Chang Z, et al. BinPacker: Packing-based de novo transcriptome assembly from RNA-seq data[J]. T. Lengauer. PLOS Computational Biology, 2016, 12(2): e1004772
    Ma Y C, Huang P, Wang X L, et al. Multi-omics analysis unravels positive effect of rotenone on the cordycepin biosynthesis in submerged fermentation of Cordyceps militaris[J]. Bioresource Technology, 2023, 373: 128705
    Jiang X, Mao Z, Zhong L, et al. Strategy to promote the biodegradation of phenanthrene in contaminated soil by a novel bacterial consortium in slurry bioreactors[J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 5515
    Simpanen S, Dahl M, Gerlach M, et al. Biostimulation proved to be the most efficient method in the comparison of in situ soil remediation treatments after a simulated oil spill accident[J]. Environmental Science and Pollution Research, 2016, 23(24): 25024-25038
    Banet G, Turaani A K, Farber R, et al. The effects of biostimulation and bioaugmentation on crude oil biodegradation in two adjacent terrestrial oil spills of different age, in a hyper-arid region[J]. Journal of Environmental Management, 2021, 286: 112248
    Roldán M D, Pérez-Reinado E, Castillo F, et al. Reduction of polynitroaromatic compounds: The bacterial nitroreductases[J]. FEMS Microbiology Reviews, 2008, 32(3): 474-500
    Gumuscu B, Tekinay T. Effective biodegradation of 2,4,6-trinitrotoluene using a novel bacterial strain isolated from TNT-contaminated soil[J]. International Biodeterioration & Biodegradation, 2013, 85: 35-41
    Peres C M, Agathos S N. Biodegradation of nitroaromatic pollutants: From pathways to remediation[J]. Biotechnology Annual Review, 2000, 6: 197-220
  • 加载中
计量
  • 文章访问数:  484
  • HTML全文浏览数:  484
  • PDF下载数:  143
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-02-20
尹茂灵, 赖金龙, 杨旭, 朱勇兵, 张宇, 赵三平. 蜡样芽孢杆菌T4对TNT的降解及耐受机制[J]. 生态毒理学报, 2024, 19(5): 309-320. doi: 10.7524/AJE.1673-5897.20240220001
引用本文: 尹茂灵, 赖金龙, 杨旭, 朱勇兵, 张宇, 赵三平. 蜡样芽孢杆菌T4对TNT的降解及耐受机制[J]. 生态毒理学报, 2024, 19(5): 309-320. doi: 10.7524/AJE.1673-5897.20240220001
Yin Maoling, Lai Jinlong, Yang Xu, Zhu Yongbing, Zhang Yu, Zhao Sanping. Analysis of TNT Degradation and Tolerance Mechanism of Bacillus cereus Strain T4[J]. Asian journal of ecotoxicology, 2024, 19(5): 309-320. doi: 10.7524/AJE.1673-5897.20240220001
Citation: Yin Maoling, Lai Jinlong, Yang Xu, Zhu Yongbing, Zhang Yu, Zhao Sanping. Analysis of TNT Degradation and Tolerance Mechanism of Bacillus cereus Strain T4[J]. Asian journal of ecotoxicology, 2024, 19(5): 309-320. doi: 10.7524/AJE.1673-5897.20240220001

蜡样芽孢杆菌T4对TNT的降解及耐受机制

    通讯作者: 张宇,E-mail:zhangyuustc@163.com;  赵三平,E-mail:spzhao@mail.ustc.edu.cn
    作者简介: 尹茂灵(1997-),女,硕士研究生,研究方向为环境微生物,E-mail:2834939603@qq.com
  • 1. 西南科技大学生命科学与工程学院, 绵阳 621000;
  • 2. 国民核生化灾害防护国家重点实验室, 北京 102205
基金项目:

智强基金项目(ZQ2021-01);国家自然科学基金项目(22176222,22106182)

摘要: 2,4,6-三硝基甲苯(TNT)是1种硝基芳香族污染物,对人类和生态环境造成严重危害。全面了解微生物对TNT胁迫的细胞反应,对于开发合理的TNT修复技术是必要的。本研究以蜡样芽孢杆菌T4为研究对象,筛选细菌最适的生物刺激因子,分析外源营养物质刺激对细菌生长及TNT转化的影响。利用转录组和代谢组学技术,揭示微生物对TNT的降解和耐受机制。结果显示,该细菌的最适碳氮源分别为葡萄糖、酵母粉。当TNT浓度为100 mg·L-1时,培养基中葡萄糖和酵母粉浓度分别为9.08 g·L-1和0.94 g·L-1。在泥浆反应体系中接种TNT降解菌,TNT的降解率达到96.91%~97.73%。此外,共鉴定到892个差异表达基因和139个差异代谢物。组学联合分析表明,氨基酸代谢、碳水化合物代谢、能量代谢和膜转运途径参与了细菌对TNT的降解及耐受过程。

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回