硒暴露对斑马鱼(Danio rerio)组织元素含量及氧化胁迫的影响研究
Effects of Tissue Element Content and Oxidative Stress after Zebrafish (Danio rerio) Exposed to Selenium
-
摘要: 以斑马鱼为受试材料,研究了Se(Ⅳ)暴露对斑马鱼组织的元素含量及氧化胁迫的影响。试验分4组,分别为对照组,5 μg·L-1、50 μg·L-1和500 μg·L-1暴露组,处理21 d后,对斑马鱼各组织(脑、鳃、肝、肠、肌肉)中的Se、Al、Cr、Cu、Mg和Zn的含量进行测定,同时测定各组织中超氧化物歧化酶(SOD)活性、谷胱甘肽-S-转移酶(GST)活性、还原型谷胱甘肽(GSH)含量和脂质过氧化产物(MDA)含量。结果显示,与对照组相比,硒处理组斑马鱼各组织呈现不同程度的硒累积,肝组织中硒累积量最高,且元素Cu和Zn显著增加。肝组织中SOD和GSH水平呈现先升高后降低的趋势,500 μg·L-1处理组肝组织中GST活性显著降低56.5%,而肝和鳃组织中MDA分别显著升高3.1倍和1.6倍。研究结果表明硒暴露破坏斑马鱼组织Cu、Zn元素平衡,引起脂质过氧化,诱导斑马鱼肝鳃组织发生氧化胁迫,试验为进一步从元素平衡和氧化胁迫角度研究硒暴露对水生生物的毒性效应奠定了基础。Abstract: This study aimed to explore the effects of selenium (Se) exposure on the element content and oxidative stress in zebrafish (Danio rerio) tissues. The treatments were divided into four groups, i.e., control group, 5 μg·L-1-exposed group, 50 μg·L-1-exposed group, 500 μg·L-1-exposed group. The levels of Se, Al, Cr, Cu, Mg and Zn, superoxide dismutase (SOD), reduced glutathione (GSH), glutathione S-transferase (GST) and malonyldialdehyde (MDA) were determined in different tissues (brain, gill, liver, intestine, and muscle) of zebrafish after exposure to Se for 21 days. The results showed that different extents of Se accumulation occurred in fish tissues in the Se-exposed groups compared to the control treatment. Specifically, Se accumulation was the highest and Zn and Cu increased remarkably in the liver. GSH and SOD in liver tissues firstly increased and then decreased significantly. The activity of GST was significantly decreased by 56.5% in 500 μg·L-1-exposed liver tissues. However, MDA was significantly increased by 3.1-fold in liver tissues and by 1.6-fold in gill tissues, respectively. These results demonstrated that Se exposure destroyed the balance of Cu and Zn in zebrafish tissues, caused lipid peroxidation, and induced oxidative stress in zebrafish liver and gill tissues. Our findings lay a foundation for further study in the toxic effects of selenium exposure on aquatic organisms from the perspective of element balance and oxidative stress.
-
Key words:
- selenium accumulation /
- zebrafish /
- element content /
- oxidative stress
-
-
Zuberbuehler C A, Messikommer R E, Arnold M M, et al. Effects of selenium depletion and selenium repletion by choice feeding on selenium status of young and old laying hens[J]. Physiology & Behavior, 2006, 87(2): 430-440 Bowie G L, Sanders J G, Riedel G F, et al. Assessing selenium cycling and accumulation in aquatic ecosystems[J]. Water, Air, & Soil Pollution, 1996, 90(1): 93-104 Lemly A D. Aquatic selenium pollution is a global environmental safety issue[J]. Ecotoxicology and Environmental Safety, 2004, 59(1): 44-56 National Research Council. Nutrient Requirements of Fish and Shrimp[S]. Washington DC: The National Academies Press, Springer Science & Business Media, 2012 Hamilton S J. Review of selenium toxicity in the aquatic food chain[J]. Science of the Total Environment, 2004, 326(1/2/3): 1-31 Hoffman D J. Role of selenium toxicity and oxidative stress in aquatic birds[J]. Aquatic Toxicology, 2002, 57(1/2): 11-26 Lemly A D. Selenium Assessment in Aquatic Ecosystems: A Guide for Hazard Evaluation and Water Quality Criteria[M]. New York: Springer, 2002: 161 Deverel S, Gilliom R, Fujii R, et al. Areal distribution of selenium and other inorganic constituents in shallow ground water of the San Luis Drain Service Area, San Joaquin Valley, California; a preliminary study[R]. Sacramento: US Geological Survey, 1984 Wang Z C, Becker H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer[J]. Nature, 2013, 499(7458): 328-331 Chapman P. A Pellston Workshop on Selenium in the Aquatic Environment[M]//Ecological Assessment of Selenium in the Aquatic Environment. Boca Raton: CRC Press, 2010: 1-3 Maier K J, Knight A W. Ecotoxicology of selenium in freshwater systems[J]. Reviews of Environmental Contamination and Toxicology, 1994, 134: 31-48 孙博, 瞿建宏, 裘丽萍, 等. 二溴海因对吉富罗非鱼血浆的氧化胁迫效应[J]. 农业环境科学学报, 2015, 34(9): 1633-1639 Sun B, Qu J H, Qiu L P, et al. Effects of 1,3-dibromo-5,5-dimethylhydantoin (DBDMH) on plasma antioxidant defense system in GIFT Nile tilapia[J]. Journal of Agro-Environment Science, 2015, 34(9): 1633-1639(in Chinese)
任海, 李健, 李吉涛, 等. 急性氨氮胁迫对脊尾白虾(Exopalaemon carinicauda)抗氧化系统酶活力及GPx基因表达的影响[J]. 农业环境科学学报, 2014, 33(4): 647-655 Ren H, Li J, Li J T, et al. Effects of acute ammonia stresses on antioxidant enzyme activities and GPx gene expression in Exopalaemon carinicauda[J]. Journal of Agro-Environment Science, 2014, 33(4): 647-655(in Chinese)
冯烨. 斑马鱼体内抗氧化酶活性对水体重金属与有机污染的响应研究[D]. 南昌: 南昌航空大学, 2012: 4-7 Feng Y. Response of antioxidant enzyme activity in zebrafish to heavy metals and organic pollution in water[D]. Nanchang: Nanchang Hangkong University, 2012: 4 -7(in Chinese)
Ates B, Orun I, Talas Z S, et al. Effects of sodium selenite on some biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) exposed to Pb2+ and Cu2+[J]. Fish Physiology and Biochemistry, 2008, 34(1): 53-59 Ma Y, Wu M, Li D, et al. Embryonic developmental toxicity of selenite in zebrafish (Danio rerio) and prevention with folic acid[J]. Food and Chemical Toxicology, 2012, 50(8): 2854-2863 Deng X Y, Wu F, Liu Z, et al. The splenic toxicity of water soluble multi-walled carbon nanotubes in mice[J]. Carbon, 2009, 47(6): 1421-1428 Zhang X L, An L J, Bao Y M, et al. D-galactose administration induces memory loss and energy metabolism disturbance in mice: Protective effects of catalpol[J]. Food and Chemical Toxicology, 2008, 46(8): 2888-2894 马珊珊, 赵光辉, 常文越, 等. Se(Ⅳ)和Se(Ⅵ)在斑马鱼组织中的累积及对抗氧化系统的影响[J]. 农业环境科学学报, 2019, 38(1): 51-59 Ma S S, Zhao G H, Chang W Y, et al. Selenium accumulation and its effects on the antioxidant system of zebrafish (Danio rerio) exposed to selenite and selenate[J]. Journal of Agro-Environment Science, 2019, 38(1): 51-59(in Chinese)
Ma S S, Zhou Y, Chen H X, et al. Selenium accumulation and the effects on the liver of topmouth gudgeon Pseudorasbora parva exposed to dissolved inorganic selenium[J]. Ecotoxicology and Environmental Safety, 2018, 160: 240-248 Ma S S, Zeng X F, Chen H X, et al. The differences in bioaccumulation and effects between Se(Ⅳ) and Se(VI) in the topmouth gudgeon Pseudorasbora parva[J]. Scientific Reports, 2018, 8(1): 13860 Kim J H, Kang J C. The selenium accumulation and its effect on growth, and haematological parameters in red sea bream, Pagrus major, exposed to waterborne selenium[J]. Ecotoxicology and Environmental Safety, 2014, 104: 96-102 Li L X, Chen H X, Bi R, et al. Bioaccumulation, subcellular distribution, and acute effects of chromium in Japanese medaka (Oryzias latipes)[J]. Environmental Toxicology and Chemistry, 2015, 34(11): 2611-2617 Hauser-Davis R A, Silva J A, Rocha R C, et al. Acute selenium selenite exposure effects on oxidative stress biomarkers and essential metals and trace-elements in the model organism zebrafish (Danio rerio)[J]. Journal of Trace Elements in Medicine and Biology, 2016, 33: 68-72 Witko-Sarsat V, Friedlander M, Capeillère-Blandin C, et al. Advanced oxidation protein products as a novel marker of oxidative stress in uremia[J]. Kidney International, 1996, 49(5): 1304-1313 Daneshvar B, Frandsen H, Autrupand H, et al. γ-glutamyl semialdehyde and 2-amino-adipic semialdehyde: Biomarkers of oxidative damage to proteins[J]. Biomarkers, 1997, 2(2): 117-123 Kohen R, Nyska A. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification[J]. Toxicologic Pathology, 2002, 30(6): 620-650 Misra S, Niyogi S. Selenite causes cytotoxicity in rainbow trout (Oncorhynchus mykiss) hepatocytes by inducing oxidative stress[J]. Toxicology in Vitro, 2009, 23(7): 1249-1258 Xie L T, Wu X, Chen H X, et al. A low level of dietary selenium has both beneficial and toxic effects and is protective against Cd-toxicity in the least killifish Heterandria formosa[J]. Chemosphere, 2016, 161: 358-364 Orun I, Ates B, Selamoglu Z, et al. Effects of various sodium selenite concentrations on some biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss)[J]. Fresenius Environmental Bulletin, 2005, 14: 18-22 Nanda D, Tolputt J, Collard K J. Changes in brain glutathione levels during postnatal development in the rat[J]. Brain Research Developmental Brain Research, 1996, 94(2): 238-241 Rose R C. Cerebral metabolism of oxidized ascorbate[J]. Brain Research, 1993, 628(1/2): 49-55 Shila S, Subathra M, Devi M A, et al. Arsenic intoxication-induced reduction of glutathione level and of the activity of related enzymes in rat brain regions: Reversal by DL-alpha-lipoic acid[J]. Archives of Toxicology, 2005, 79(3): 140-146 Miller L L, Wang F, Palace V P, et al. Effects of acute and subchronic exposures to waterborne selenite on the physiological stress response and oxidative stress indicators in juvenile rainbow trout[J]. Aquatic Toxicology, 2007, 83(4): 263-271 Masukawa T, Nishimura T, Iwata H. Differential changes of glutathione S-transferase activity by dietary selenium[J]. Biochemical Pharmacology, 1984, 33(16): 2635-2639 Kim J H, Kang J C. Oxidative stress, neurotoxicity, and non-specific immune responses in juvenile red sea bream, Pagrus major, exposed to different waterborne selenium concentrations[J]. Chemosphere, 2015, 135: 46-52 Misra S, Hamilton C, Niyogi S. Induction of oxidative stress by selenomethionine in isolated hepatocytes of rainbow trout (Oncorhynchus mykiss)[J]. Toxicology in Vitro, 2012, 26(4): 621-629 Spallholz J E, Hoffman D J. Selenium toxicity: Cause and effects in aquatic birds[J]. Aquatic Toxicology, 2002, 57(1/2): 27-37 Lavado R, Shi D L, Schlenk D. Effects of salinity on the toxicity and biotransformation of l-selenomethionine in Japanese medaka (Oryzias latipes) embryos: Mechanisms of oxidative stress[J]. Aquatic Toxicology, 2012, 108: 18-22 -

计量
- 文章访问数: 541
- HTML全文浏览数: 541
- PDF下载数: 154
- 施引文献: 0