二苯甲酮(BP-3)对树干毕赤酵母的细胞毒性和毒理
Cytotoxicity and Toxicology of Benzophenone (BP-3) on Yeast Strain (Pichia stipitis)
-
摘要: 二苯甲酮(BP-3,氧苯酮)是1种常见的紫外线(UV)过滤剂,由于其生态毒理作用越来越受到关注。本研究目的是探索不同浓度的BP-3对树干毕赤酵母(Pichia stipitis)的毒性影响。将树干毕赤酵母分为溶剂对照组CK (二甲基亚砜DMSO)、CK(无菌水)、0.01、10、20、50、80和100 mg·L-1,从酵母细胞密度、细胞形态、细胞死亡率、细胞膜通透性、乙醇发酵、丙二醛(MDA)含量以及细胞抗氧化酶活性及抗氧化剂含量(超氧化物歧化酶SOD、过氧化物酶POD和过氧化氢酶CAT)进行检测。根据实验结果,揭示了BP-3对树干毕赤酵母的生态毒理效应。结果表明,不同浓度BP-3暴露后,树干毕赤酵母细胞生长受到抑制,死亡率随着暴露时间和BP-3浓度的增加而增加。从抗氧化指标来看,BP-3胁迫后,抗氧化酶活性受到一定影响。BP-3引起酵母细胞内活性氧(ROS)水平的增加,而脂质过氧化是由ROS引起的,ROS增加导致MDA含量增加。同时,为了消除过量ROS,胞内SOD和POD的活性随着BP-3浓度的增加而增加。BP-3具有亲脂性,通过破坏细胞膜进入细胞,导致DNA和蛋白质的泄露,同时也使细胞产乙醇能力下降。扫描电子显微镜(SEM)结果显示,BP-3会导致细胞表面产生皱纹和凹坑,导致细胞变形甚至破裂。这些发现为BP-3在生态环境中的风险评估提供了有价值的数据支撑。Abstract: Benzophenone (BP-3, oxybenzone), a regularly used ultraviolet (UV) filter, is becoming a greater environmental issue due to its ecotoxicological effects. The aim of this study was to investigate the effects of different concentrations of BP-3 on the toxicity of yeast strain (Pichia stipitis). In the present study, yeast strain was divided into solvent control CK (dimethyl sulfoxide DMSO), CK (sterile water), 0.01, 10, 20, 50, 80 and 100 mg·L-1 was analyzed in terms of yeast cell density, cell morphology, cell death rate, cell membrane permeability, ethanol fermentation, malondialdehyde (MDA) content as well as cellular antioxidant enzyme activity and antioxidant content (superoxide dismutase SOD, peroxidase POD and catalase CAT). Based on the experimental results, the ecotoxicological effects of BP-3 on yeast strains were revealed. The results showed that the growth of yeast strain cells was inhibited after exposure to different concentrations of BP-3, and the mortality rate increased with increasing exposure time and BP-3 concentration. Antioxidant enzyme activities were impacted by BP-3 stress in terms of antioxidant indices. Lipid peroxidation induced by BP-3 raised the intracellular concentration of reactive oxygen species (ROS), which in turn raised the levels of MDA. Meanwhile, to eliminate excess ROS, the activities of intracellular SOD and POD increased with increasing BP-3 concentration. Because BP-3 is lipophilic, it penetrates the cell by rupturing the cell membrane, which causes proteins and DNA to flow out and reduces the cell’s ability to produce ethanol. According to SEM, BP-3 causes wrinkles and pits on the cell surface, leading to cell deformation and even rupture. These results provide valuable data to support the risk assessment of BP-3 in ecosystems.
-
Key words:
- benzophenone /
- Pichia stipitis /
- oxidative stress /
- fermentation /
- cell morphology
-
-
Ma J C, Wang Z M, Qin C, et al. Safety of benzophenone-type UV filters: A mini review focusing on carcinogenicity, reproductive and developmental toxicity[J]. Chemosphere, 2023, 326: 138455 Kim S, Choi K. Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: A mini-review[J]. Environment International, 2014, 70: 143-157 柯怀泱, 张彦坤, 张纪亮, 等. 二苯甲酮(BP-3)对黄尾蓝魔鱼(Chrysiptera parasema)的生态毒理效应[J]. 生态毒理学报, 2022, 17(5): 75-81 Ke H Y, Zhang Y K, Zhang J L, et al. Ecotoxicological effects of benzophenone-3 exposure on liver of Chrysiptera parasema[J]. Asian Journal of Ecotoxicology, 2022, 17(5): 75-81(in Chinese)
Carve M, Nugegoda D, Allinson G, et al. A systematic review and ecological risk assessment for organic ultraviolet filters in aquatic environments[J]. Environmental Pollution, 2021, 268(Pt B): 115894 Li S H, Ran S X, Downs C A, et al. A combined proteomics and metabolomics analysis reveals the invisible regulation of plant root responses to oxybenzone (benzophenone-3) stress[J]. Science of the Total Environment, 2023, 893: 164951 Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72: 248-254 吴丽华, 陈燕飞, 陈鹏, 等. 亚砷酸钠对酵母细胞抗氧化酶活性和脂质过氧化的影响[J]. 生态毒理学报, 2016, 11(3): 302-307 Wu L H, Chen Y F, Chen P, et al. Sodium arsenite exposure affects the levels of antioxidant enzymes and lipid peroxidation in Saccharomyces cerevisiae[J]. Asian Journal of Ecotoxicology, 2016, 11(3): 302-307(in Chinese)
Golinejad S, Mirjalili M H. Fast and cost-effective preparation of plant cells for scanning electron microscopy (SEM) analysis[J]. Analytical Biochemistry, 2020, 609: 113920 Salari R, Salari R. Investigation of the best Saccharomyces cerevisiae growth condition[J]. Electronic Physician, 2017, 9(1): 3592-3597 Zhong X, Downs C A, Che X K, et al. The toxicological effects of oxybenzone, an active ingredient in suncream personal care products, on prokaryotic alga Arthrospira sp. and eukaryotic alga Chlorella sp.[J]. Aquatic Toxicology, 2019, 216: 105295 Lozano C, Lee C, Wattiez R, et al. Unraveling the molecular effects of oxybenzone on the proteome of an environmentally relevant marine bacterium[J]. Science of the Total Environment, 2021, 793: 148431 Lozano C, Matallana-Surget S, Givens J, et al. Toxicity of UV filters on marine bacteria: Combined effects with damaging solar radiation[J]. Science of the Total Environment, 2020, 722: 137803 Shang E X, Niu J F, Li Y, et al. Comparative toxicity of Cd, Mo, and W sulphide nanomaterials toward E. coli under UV irradiation[J]. Environmental Pollution, 2017, 224: 606-614 He L, He T, Farrar S, et al. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species[J]. Cellular Physiology and Biochemistry, 2017, 44(2): 532-553 Jin M K, Wang H, Liu H J, et al. Oxidative stress response and proteomic analysis reveal the mechanisms of toxicity of imidazolium-based ionic liquids against Arabidopsis thaliana[J]. Environmental Pollution, 2020, 260: 114013 Hanschke R, Schauer F. Improved ultrastructural preservation of yeast cells for scanning electron microscopy[J]. Journal of Microscopy, 1996, 184(Pt 2): 81-87 Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges[J]. Analytical Biochemistry, 2017, 524: 13-30 Wang Y H, Shang Y J, Liu X D, et al. Toxicity comparison of benzophenone-3 and its metabolite benzophenone-8 in different tissues of zebrafish[J]. Aquatic Toxicology, 2024, 268: 106852 van Creveld S G, Rosenwasser S, Schatz D, et al. Early perturbation in mitochondria redox homeostasis in response to environmental stress predicts cell fate in diatoms[J]. The ISME Journal, 2015, 9(2): 385-395 García-Márquez M G, Rodríguez-Castañeda J C, Agawin N S R. Effects of the sunscreen ultraviolet filter oxybenzone (benzophenone-3) on the seagrass Posidonia oceanica (L.) Delile and its associated N2 fixers[J]. Science of the Total Environment, 2024, 918: 170751 Kumar M S, Kabra A N, Min B, et al. Insecticides induced biochemical changes in freshwater microalga Chlamydomonas mexicana[J]. Environmental Science and Pollution Research International, 2016, 23(2): 1091-1099 Latifi A, Ruiz M, Zhang C C. Oxidative stress in cyanobacteria[J]. FEMS Microbiology Reviews, 2009, 33(2): 258-278 Mao F J, He Y L, Gin K Y. Antioxidant responses in cyanobacterium Microcystis aeruginosa caused by two commonly used UV filters, benzophenone-1 and benzophenone-3, at environmentally relevant concentrations[J]. Journal of Hazardous Materials, 2020, 396: 122587 Biczak R, Pawłowska B, Telesiński A, et al. Role of cation structure in the phytotoxicity of ionic liquids: Growth inhibition and oxidative stress in spring barley and common radish[J]. Environmental Science and Pollution Research International, 2017, 24(22): 18444-18457 Anet A, Olakkaran S, Kizhakke Purayil A, et al. Bisphenol A induced oxidative stress mediated genotoxicity in Drosophila melanogaster[J]. Journal of Hazardous Materials, 2019, 370: 42-53 Chin D C, Senthil Kumar R, Suen C S, et al. Plant cytosolic ascorbate peroxidase with dual catalytic activity modulates abiotic stress tolerances[J]. iScience, 2019, 16: 31-49 Xu Y Q, Wang J H, Du Z K, et al. Toxicity evaluation ofthree imidazolium-based ionic liquids ([C6mim]R) on Vicia faba seedlings using an integrated biomarker response (IBR) index[J]. Chemosphere, 2020, 240: 124919 Rajeshkumar S, Liu Y, Ma J G, et al. Effects of exposure to multiple heavy metals on biochemical and histopathological alterations in common carp, Cyprinus carpio L[J]. Fish & Shellfish Immunology, 2017, 70: 461-472 Xie Z M, Wang Y X, Liu Y D, et al. Ultraviolet-B exposure induces photo-oxidative damage and subsequent repair strategies in a desert cyanobacterium Microcoleus vaginatus Gom[J]. European Journal of Soil Biology, 2009, 45(4): 377-382 Chu L L, Kang X, Li D P, et al. Physiological responses of Pichia stipitis to imidazolium chloride ionic liquids with different carbon chain length[J]. Chemosphere, 2022, 286(Pt 1): 131578 Du Y, Wang W Q, Pei Z T, et al. Acute toxicity and ecological risk assessment of benzophenone-3(BP-3) and benzophenone-4(BP-4) in ultraviolet (UV)-filters[J]. International Journal of Environmental Research and Public Health, 2017, 14(11): 1414 Seoane M, Cid Á, Herrero C, et al. Comparative acute toxicity of benzophenone derivatives and bisphenol analogues in the Asian clam Corbicula fluminea[J]. Ecotoxicology, 2021, 30(1): 142-153 Yang Y, Zhou G J, Li Z Y, et al. Effects of benzophenone-3 and its metabolites on the marine diatom Chaetoceros neogracilis: Underlying mechanisms and environmental implications[J]. Science of the Total Environment, 2024, 923: 171371 Anuj K, da Silva S S, Om V. Detoxification of lignocellulosic hydrolysates for improved bioethanol production[J]. Biofuel Production-Recent Developments and Prospects, 2011, 29: 494-508 程逸超. 离子液体对树干毕赤酵母乙醇发酵的影响[D]. 南京: 南京林业大学, 2017: 21-33 Cheng Y C. Effect of ionic liquid on ethanol fermentation of Pichia pastoris[D]. Nanjing: Nanjing Forestry University, 2017: 21 -33(in Chinese)
Yang F F, Wei Z L, Long C, et al. Toxicological effects of oxybenzone on the growth and bacterial composition of Symbiodiniaceae[J]. Environmental Pollution, 2023, 317: 120807 -

计量
- 文章访问数: 589
- HTML全文浏览数: 589
- PDF下载数: 148
- 施引文献: 0