稻米砷的生物有效性及烹饪方式和膳食组分的影响

姚世浩, 赵迪. 稻米砷的生物有效性及烹饪方式和膳食组分的影响[J]. 生态毒理学报, 2024, 19(5): 189-200. doi: 10.7524/AJE.1673-5897.20240401002
引用本文: 姚世浩, 赵迪. 稻米砷的生物有效性及烹饪方式和膳食组分的影响[J]. 生态毒理学报, 2024, 19(5): 189-200. doi: 10.7524/AJE.1673-5897.20240401002
Yao Shihao, Zhao Di. Arsenic Bioavailability in Rice and the Influence of Cooking Process and Dietary Components[J]. Asian journal of ecotoxicology, 2024, 19(5): 189-200. doi: 10.7524/AJE.1673-5897.20240401002
Citation: Yao Shihao, Zhao Di. Arsenic Bioavailability in Rice and the Influence of Cooking Process and Dietary Components[J]. Asian journal of ecotoxicology, 2024, 19(5): 189-200. doi: 10.7524/AJE.1673-5897.20240401002

稻米砷的生物有效性及烹饪方式和膳食组分的影响

    作者简介: 姚世浩(2000-),男,硕士研究生,研究方向为环境重金属污染与控制,E-mail:2022103041@stu.njau.edu.cn
    通讯作者: 赵迪,E-mail:dizhao@njau.edu.cn
  • 基金项目:

    国家重点研发计划项目(2021YFC1809100);国家自然科学基金项目(42107430)

  • 中图分类号: X171.5

Arsenic Bioavailability in Rice and the Influence of Cooking Process and Dietary Components

    Corresponding author: Zhao Di, dizhao@njau.edu.cn
  • Fund Project:
  • 摘要: 砷是广泛存在于自然环境中的有毒元素,而稻米是我国人群砷暴露的重要来源。稻米砷暴露的健康风险不仅取决于砷总量,更取决于稻米砷的生物有效性。本文汇总了基于体外胃肠模拟方法测定的稻米砷生物有效性的研究进展;对比了不同烹饪方式(如淘洗、烹饪、水米比及烹饪用水砷浓度)对稻米砷生物有效性的影响规律;并讨论了不同膳食组分(如铁、宏量营养素及其他成分)对砷生物有效性的影响效果。最后,本文提出了降低稻米砷暴露风险的调控建议,并展望了未来人体砷暴露风险评估工作的发展方向。
  • 加载中
  • Smith A H, Steinmaus C M. Health effects of arsenic and chromium in drinking water: Recent human findings[J]. Annual Review of Public Health, 2009, 30: 107-122
    Abernathy C O, Liu Y P, Longfellow D, et al. Arsenic: Health effects, mechanisms of actions, and research issues[J]. Environmental Health Perspectives, 1999, 107(7): 593-597
    Lubin J H, Beane Freeman L E, Cantor K P. Inorganic arsenic in drinking water: An evolving public health concern[J]. Journal of the National Cancer Institute, 2007, 99(12): 906-907
    Chen Y, Parvez F, Gamble M, et al. Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the health effects of arsenic longitudinal study (HEALS) in Bangladesh[J]. Toxicology and Applied Pharmacology, 2009, 239(2): 184-192
    Tripathi R M, Raghunath R, Krishnamoorthy T M. Arsenic intake by the adult population in Bombay City[J]. Science of the Total Environment, 1997, 208(1/2): 89-95
    Del Razo L M, Garcia-Vargas G G, Garcia-Salcedo J, et al. Arsenic levels in cooked food and assessment of adult dietary intake of arsenic in the Region Lagunera, Mexico[J]. Food and Chemical Toxicology, 2002, 40(10): 1423-1431
    Roychowdhury T, Uchino T, Tokunaga H, et al. Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India[J]. Food and Chemical Toxicology, 2002, 40(11): 1611-1621
    Roychowdhury T, Tokunaga H, Ando M. Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India[J]. Science of the Total Environment, 2003, 308(1/2/3): 15-35
    Podgorski J, Berg M. Global threat of arsenic in groundwater[J]. Science, 2020, 368(6493): 845-850
    Huang B Y, Zhao F J, Wang P. The relative contributions of root uptake and remobilization to the loading of Cd and As into rice grains: Implications in simultaneously controlling grain Cd and As accumulation using a segmented water management strategy[J]. Environmental Pollution, 2022, 293: 118497
    Jeong Jm K E L J. Review of rice: Production, trade, consumption, and future demand in Korea and worldwide[J]. Korean Journal of Crop Science, 2017, 62(3): 157-165
    Mahmood-Ul-Hassan M, Yousra M, Ahmad R, et al. Arsenic contamination in rice grown under anaerobic condition in arid agriculture: Assessment and remediation[J]. Bulletin of Environmental Contamination and Toxicology, 2019, 103(6): 865-870
    Singh S, Mishra H, Suprasanna P. Evaluation of arsenic remediation, morphological and biochemical response by Vetiveria zizanoides L. plants grown on artificially arsenic contaminated soil: A field study[J]. Ecological Engineering, 2021, 168: 106267
    Singh S, Karwadiya J, Srivastava S, et al. Potential of indigenous plant species for phytoremediation of arsenic contaminated water and soil[J]. Ecological Engineering, 2022, 175: 106476
    Upadhyay M K, Majumdar A, Barla A, et al. An assessment of arsenic hazard in groundwater-soil-rice system in two villages of Nadia District, West Bengal, India[J]. Environmental Geochemistry and Health, 2019, 41(6): 2381-2395
    Carey M, Meharg C, Williams P, et al. Global sourcing of low-inorganic arsenic rice grain[J]. Exposure and Health, 2020, 12(4): 711-719
    Li G, Sun G X, Williams P N, et al. Inorganic arsenic in Chinese food and its cancer risk[J]. Environment International, 2011, 37(7): 1219-1225
    Nunes L M, Li G, Chen W Q, et al. Embedded health risk from arsenic in globally traded rice[J]. Environmental Science & Technology, 2022, 56(10): 6415-6425
    Bolan S, Kunhikrishnan A, Chowdhury S, et al. Comparative analysis of speciation and bioaccessibility of arsenic in rice grains and complementary medicines[J]. Chemosphere, 2017, 182: 433-440
    Juhasz A L, Smith E, Weber J, et al. In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment[J]. Environmental Health Perspectives, 2006, 114(12): 1826-1831
    Latawiec A E, Simmons P, Reid B J. Decision-makers’ perspectives on the use of bioaccessibility for risk-based regulation of contaminated land[J]. Environment International, 2010, 36(4): 383-389
    Chen J Y, Zeng J Y, Ding S, et al. Arsenic contents, speciation and bioaccessibility in rice grains from China: Regional and variety differences[J]. Journal of Hazardous Materials, 2022, 437: 129431
    Sun G X, van de Wiele T, Alava P, et al. Arsenic in cooked rice: Effect of chemical, enzymatic and microbial processes on bioaccessibility and speciation in the human gastrointestinal tract[J]. Environmental Pollution, 2012, 162: 241-246
    Naito S, Matsumoto E, Shindoh K, et al. Effects of polishing, cooking, and storing on total arsenic and arsenic species concentrations in rice cultivated in Japan[J]. Food Chemistry, 2015, 168: 294-301
    Laparra J M, Vélez D, Barberá R, et al. Bioavailability of inorganic arsenic in cooked rice: Practical aspects for human health risk assessments[J]. Journal of Agricultural and Food Chemistry, 2005, 53(22): 8829-8833
    Cheyns K, Waegeneers N, van de Wiele T, et al. Arsenic release from foodstuffs upon food preparation[J]. Journal of Agricultural and Food Chemistry, 2017, 65(11): 2443-2453
    Signes-Pastor A J, Al-Rmalli S W, Jenkins R O, et al. Arsenic bioaccessibility in cooked rice as affected by arsenic in cooking water[J]. Journal of Food Science, 2012, 77(11): T201-T206
    Menon M, Dong W R, Chen X M, et al. Improved rice cooking approach to maximise arsenic removal while preserving nutrient elements[J]. Science of the Total Environment, 2021, 755(Pt 2): 143341
    Zhuang P, Zhang C S, Li Y W, et al. Assessment of influences of cooking on cadmium and arsenic bioaccessibility in rice, using an in vitro physiologically-based extraction test[J]. Food Chemistry, 2016, 213: 206-214
    Villa-Bellosta R, Sorribas V. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate[J]. Toxicology and Applied Pharmacology, 2008, 232(1): 125-134
    Villa-Bellosta R, Sorribas V. Arsenate transport by sodium/phosphate cotransporter type Ⅱb[J]. Toxicology and Applied Pharmacology, 2010, 247(1): 36-40
    Liu Z J, Carbrey J M, Agre P, et al. Arsenic trioxide uptake by human and rat aquaglyceroporins[J]. Biochemical and Biophysical Research Communications, 2004, 316(4): 1178-1185
    Calatayud M, Barrios J A, Vélez D, et al. In vitro study of transporters involved in intestinal absorption of inorganic arsenic[J]. Chemical Research in Toxicology, 2012, 25(2): 446-453
    Drobná Z, Walton F S, Paul D S, et al. Metabolism of arsenic in human liver: The role of membrane transporters[J]. Archives of Toxicology, 2010, 84(1): 3-16
    Liu Z J, Sanchez M A, Jiang X, et al. Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid[J]. Biochemical and Biophysical Research Communications, 2006, 351(2): 424-430
    崔玉静, 张旭红, 朱永官. 体外模拟法在土壤-人途径重金属污染的健康风险评价中的应用[J]. 环境与健康杂志, 2007, 24(9): 672-674

    Cui Y J, Zhang X H, Zhu Y G. Health risk assessment of soil-oral exposure of heavy metal contaminated soil by in vitro method[J]. Journal of Environment and Health, 2007, 24(9): 672-674(in Chinese)

    Li H B, Li M Y, Zhao D, et al. Arsenic, lead, and cadmium bioaccessibility in contaminated soils: Measurements and validations[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(13): 1303-1338
    Huang Y T, Wang M, Mao X F, et al. Concentrations of inorganic arsenic in milled rice from China and associated dietary exposure assessment[J]. Journal of Agricultural and Food Chemistry, 2015, 63(50), 10838-10845
    Li M H, Guo X Y, Wen N H, et al. Speciation and bioaccessibility of arsenic in rice under different cooking methods and its implication in risk assessment[J]. Environmental Science and Pollution Research International, 2022, 29(58): 87938-87949
    Du F, Yang Z G, Liu P, et al. Bioaccessibility and variation of arsenic species in polished rice grains by an in vitro physiologically based extraction test method[J]. Food Chemistry, 2019, 293: 1-7
    Wang P F, Yin N Y, Cai X L, et al. Assessment of arsenic distribution, bioaccessibility and speciation in rice utilizing continuous extraction and in vitro digestion[J]. Food Chemistry, 2021, 346: 128969
    Spanier B. Transcriptional and functional regulation of the intestinal peptide transporter PEPT1.[J]. The Journal of Physiology, 2014, 592(5): 871-879
    Cabañero A I, Madrid Y, Cámara C. Selenium and mercury bioaccessibility in fish samples: An in vitro digestion method[J]. Analytica Chimica Acta, 2004, 526(1): 51-61
    Trenary H R, Creed P A, Young A R, et al. An in vitro assessment of bioaccessibility of arsenicals in rice and the use of this estimate within a probabilistic exposure model[J]. Journal of Exposure Science & Environmental Epidemiology, 2012, 22(4): 369-375
    He Y, Pedigo C E, Lam B, et al. Bioaccessibility of arsenic in various types of rice in an in vitro gastrointestinal fluid system[J]. Journal of Environmental Science and Health Part B, Pesticides, Food Contaminants, and Agricultural Wastes, 2012, 47(2): 74-80
    Meharg A A, Lombi E, Williams P N, et al. Speciation and localization of arsenic in white and brown rice grains[J]. Environmental Science & Technology, 2008, 42(4): 1051-1057
    Lombi E, Scheckel K G, Pallon J, et al. Speciation and distribution of arsenic and localization of nutrients in rice grains[J]. New Phytologist, 2009, 184(1): 193-201
    Castor J M R, Portugal L, Ferrer L, et al. An evaluation of the bioaccessibility of arsenic in corn and rice samples based on cloud point extraction and hydride generation coupled to atomic fluorescence spectrometry[J]. Food Chemistry, 2016, 204: 475-482
    Liao W, Wang G, Li K M, et al. Effect of cooking on speciation and in vitro bioaccessibility of Hg and As from rice, using ordinary and pressure cookers[J]. Biological Trace Element Research, 2019, 187(1): 329-339
    Sharafi K, Nodehi R N, Mahvi A H, et al. Bioaccessibility analysis of toxic metals in consumed rice through an in vitro human digestion model: Comparison of calculated human health risk from raw, cooked and digested rice[J]. Food Chemistry, 2019, 299: 125126
    Raab A, Baskaran C, Feldmann J, et al. Cooking rice in a high water to rice ratio reduces inorganic arsenic content[J]. Journal of Environmental Monitoring, 2009, 11(1): 41-44
    Sengupta M K, Hossain M A, Mukherjee A, et al. Arsenic burden of cooked rice: Traditional and modern methods[J]. Food and Chemical Toxicology, 2006, 44(11): 1823-1829
    Janbek J, Sarki M, Specht I O, et al. A systematic literature review of the relation between iron status/anemia in pregnancy and offspring neurodevelopment[J]. European Journal of Clinical Nutrition, 2019, 73(12): 1561-1578
    Lynch S R. The potential impact of iron supplementation during adolescence on iron status in pregnancy[J]. The Journal of Nutrition, 2000, 130(2): 448S-451S
    McCann S, Perapoch Amadó M, Moore S E. The role of iron in brain development: A systematic review[J]. Nutrients, 2020, 12(7): 2001
    Clemente M J, Devesa V, Vélez D. Dietary strategies to reduce the bioaccessibility of arsenic from food matrices[J]. Journal of Agricultural and Food Chemistry, 2016, 64(4): 923-931
    Clemente M J, Cimbalo A, Chiocchetti G, et al. Dietary compounds to reduce in vivo inorganic arsenic bioavailability[J]. Journal of Agricultural and Food Chemistry, 2019, 67(32): 9032-9038
    Wang L, Giammar D E. Effects of pH, dissolved oxygen, and aqueous ferrous iron on the adsorption of arsenic to lepidocrocite[J]. Journal of Colloid and Interface Science, 2015, 448: 331-338
    Kang Y, Takeda R, Nada A, et al. Removing arsenic from groundwater in Cambodia using high performance iron adsorbent[J]. Environmental Monitoring and Assessment, 2014, 186(9): 5605-5616
    DeLoughery T G. Iron deficiency Anemia[J]. Medical Clinics of North America, 2017, 101(2): 319-332
    Milman N T. Dietary iron intake in pregnant women in Europe: A review of 24 studies from 14 countries in the period 1991-2014[J]. Journal of Nutrition and Metabolism, 2020, 2020: 7102190
    Wang P F, Yin N Y, Cai X L, et al. Nutritional status affects the bioaccessibility and speciation of arsenic from soils in a simulator of the human intestinal microbial ecosystem[J]. Science of the Total Environment, 2018, 644: 815-821
    Clemente M J, de los Ángeles Vivó M, Puig S, et al. In vitro evaluation of the efficacy of lactobacilli and yeasts in reducing bioavailability of inorganic arsenic[J]. Lwt, 2020, 126: 109272
    Thorens B. Glucose transporters in the regulation of intestinal, renal, and liver glucose fluxes[J]. The American Journal of Physiology, 1996, 270(4 Pt 1): G541-G553
    Sakar Y, Nazaret C, Lettéron P, et al. Positive regulatory control loop between gut leptin and intestinal GLUT2/GLUT5 transporters links to hepatic metabolic functions in rodents[J]. PLoS One, 2009, 4(11): e7935
    Kellett G L, Brot-Laroche E, Mace O J, et al. Sugar absorption in the intestine: The role of GLUT2[J]. Annual Review of Nutrition, 2008, 28: 35-54
    Helliwell P A, Richardson M, Affleck J, et al. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C[J]. Biochemical Journal, 2000, 350(Pt 1): 149-154
    Gorboulev V, Schürmann A, Vallon V, et al. Na(+)-D-glucose cotransporter SGLT1 is pivotal for intestinal glucose absorption and glucose-dependent incretin secretion[J]. Diabetes, 2012, 61(1): 187-196
    Gouyon F, Caillaud L, Carriere V, et al. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: A study in GLUT2-null mice[J]. Journal of Physiology, 2003, 552(Pt 3): 823-832
    Kellett G L. The facilitated component of intestinal glucose absorption[J]. Journal of Physiology, 2001, 531(Pt 3): 585-595
    Oh A R, Sohn S, Lee J, et al. ChREBP deficiency leads to diarrhea-predominant irritable bowel syndrome[J]. Metabolism, 2018, 85: 286-297
    Walker J, Jijon H B, Diaz H, et al. 5-aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: A possible role for AMPK[J]. Biochemical Journal, 2005, 385(Pt 2): 485-491
    Alava P, Laing G D, Odhiambo M, et al. Arsenic bioaccessibility upon gastrointestinal digestion is highly determined by its speciation and lipid-bile salt interactions[J]. Journal of Environmental Science and Health Part A, Toxic/Hazardous Substances & Environmental Engineering, 2013, 48(6): 656-665
    Alava P, Laing G D, Tack F, et al. Westernized diets lower arsenic gastrointestinal bioaccessibility but increase microbial arsenic speciation changes in the colon[J]. Chemosphere, 2015, 119: 757-762
    Wang H H, Portincasa P, Liu M, et al. Effects of biliary phospholipids on cholesterol crystallization and growth in gallstone formation[J]. Advances in Therapy, 2023, 40(3): 743-768
    Peregrin A T, Ahlman H, Jodal M, et al. Involvement of serotonin and calcium channels in the intestinal fluid secretion evoked by bile salt and cholera toxin[J]. British Journal of Pharmacology, 1999, 127(4): 887-894
    Camilleri M, Murphy R, Chadwick V S. Pharmacological inhibition of chenodeoxycholate-induced fluid and mucus secretion and mucosal injury in the rabbit colon[J]. Digestive Diseases and Sciences, 1982, 27(10): 865-869
    Gelbmann C M, Schteingart C D, Thompson S M, et al. Mast cells and histamine contribute to bile acid-stimulated secretion in the mouse colon[J]. Journal of Clinical Investigation, 1995, 95(6): 2831-2839
    Yde J, Keely S, Wu Q, et al. Characterization of AQPs in mouse, rat, and human colon and their selective regulation by bile acids[J]. Frontiers in Nutrition, 2016, 3: 46
    Tsujikawa T, Itoh A, Fukunaga T, et al. Alteration of aquaporin mRNA expression after small bowel resection in the rat residual ileum and colon[J]. Journal of Gastroenterology and Hepatology, 2003, 18(7): 803-808
    Heck J E, Nieves J W, Chen Y, et al. Dietary intake of methionine, cysteine, and protein and urinary arsenic excretion in Bangladesh[J]. Environmental Health Perspectives, 2009, 117(1): 99-104
    Clemente M J, Devesa V, Vélez D. In vitro reduction of arsenic bioavailability using dietary strategies[J]. Journal of Agricultural and Food Chemistry, 2017, 65(19): 3956-3964
    Li H B, Xue R Y, Chen X Q, et al. Ca minerals and oral bioavailability of Pb, Cd, and As from indoor dust in mice: Mechanisms and health implications[J]. Environmental Health Perspectives, 2022, 130(12): 127004
    Hernando N, Pastor-Arroyo E M, Marks J, et al. 1, 25(OH)2 vitamin D3 stimulates active phosphate transport but not paracellular phosphate absorption in mouse intestine[J]. Journal of Physiology, 2021, 599(4): 1131-1150
    Thomas L, Bettoni C, Knöpfel T, et al. Acute adaption to oral or intravenous phosphate requires parathyroid hormone[J]. Journal of the American Society of Nephrology, 2017, 28(3): 903-914
    Candeal E, Caldas Y A, Guillén N, et al. Intestinal phosphate absorption is mediated by multiple transport systems in rats[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2017, 312(4): 355-366
    Bajwa A, Forster M N, Maiti A, et al. Specific regulation of CYP27B1 and VDR in proximal versus distal renal cells[J]. Archives of Biochemistry and Biophysics, 2008, 477(1): 33-42
    Shigematsu T, Horiuchi N, Ogura Y, et al. Human parathyroid hormone inhibits renal 24-hydroxylase activity of 25-hydroxyvitamin D3 by a mechanism involving adenosine 3’,5’-monophosphate in rats[J]. Endocrinology, 1986, 118(4): 1583-1589
    Brenza H L, Kimmel-Jehan C, Jehan F, et al. Parathyroid hormone activation of the 25-hydroxyvitamin D3-1alpha-hydroxylase gene promoter[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(4): 1387-1391
    Hughes M R, Brumbaugh P F, Hussler M R, et al. Regulation of serum 1alpha, 25-dihydroxyvitamin D3 by calcium and phosphate in the rat[J]. Science, 1975, 190(4214): 578-580
    Lederer E, Wagner C A. Clinical aspects of the phosphate transporters NaPi-Ⅱa and NaPi-Ⅱb: Mutations and disease associations[J]. Pflugers Archiv, 2019, 471(1): 137-148
    Waters S B, Devesa V, Del Razo L M, et al. Endogenous reductants support the catalytic function of recombinant rat cyt19, an arsenic methyltransferase[J]. Chemical research in Toxicology, 2004, 17(3): 404-409
    Sun L L, Jiang H B, Liu B Y, et al. Effects of rhein on intestinal transmission, colonic electromyography and expression of aquaporin-3 by colonic epithelium cells in constipated mice[J]. International Journal of Clinical and Experimental Pathology, 2018, 11(2): 614-623
    Walton J, Bell H, Re R, et al. Current perspectives on global sugar consumption: Definitions, recommendations, population intakes, challenges and future direction[J]. Nutrition Research Reviews, 2023, 36(1): 1-22
    Liu Y, Cheng J, Wan L J, et al. Total and added sugar intakes are increasing among children and adolescents in China: Findings from CHNS 1997-2011[J]. Nutrients, 2022, 14(16): 3340
    Schmidhuber J, Sur P, Fay K, et al. The Global Nutrient Database: Availability of macronutrients and micronutrients in 195 countries from 1980 to 2013[J]. The Lancet Planetary Health, 2018, 2(8): e353-e368
  • 加载中
计量
  • 文章访问数:  493
  • HTML全文浏览数:  493
  • PDF下载数:  147
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-04-01
姚世浩, 赵迪. 稻米砷的生物有效性及烹饪方式和膳食组分的影响[J]. 生态毒理学报, 2024, 19(5): 189-200. doi: 10.7524/AJE.1673-5897.20240401002
引用本文: 姚世浩, 赵迪. 稻米砷的生物有效性及烹饪方式和膳食组分的影响[J]. 生态毒理学报, 2024, 19(5): 189-200. doi: 10.7524/AJE.1673-5897.20240401002
Yao Shihao, Zhao Di. Arsenic Bioavailability in Rice and the Influence of Cooking Process and Dietary Components[J]. Asian journal of ecotoxicology, 2024, 19(5): 189-200. doi: 10.7524/AJE.1673-5897.20240401002
Citation: Yao Shihao, Zhao Di. Arsenic Bioavailability in Rice and the Influence of Cooking Process and Dietary Components[J]. Asian journal of ecotoxicology, 2024, 19(5): 189-200. doi: 10.7524/AJE.1673-5897.20240401002

稻米砷的生物有效性及烹饪方式和膳食组分的影响

    通讯作者: 赵迪,E-mail:dizhao@njau.edu.cn
    作者简介: 姚世浩(2000-),男,硕士研究生,研究方向为环境重金属污染与控制,E-mail:2022103041@stu.njau.edu.cn
  • 南京农业大学资源与环境科学学院, 南京 210095
基金项目:

国家重点研发计划项目(2021YFC1809100);国家自然科学基金项目(42107430)

摘要: 砷是广泛存在于自然环境中的有毒元素,而稻米是我国人群砷暴露的重要来源。稻米砷暴露的健康风险不仅取决于砷总量,更取决于稻米砷的生物有效性。本文汇总了基于体外胃肠模拟方法测定的稻米砷生物有效性的研究进展;对比了不同烹饪方式(如淘洗、烹饪、水米比及烹饪用水砷浓度)对稻米砷生物有效性的影响规律;并讨论了不同膳食组分(如铁、宏量营养素及其他成分)对砷生物有效性的影响效果。最后,本文提出了降低稻米砷暴露风险的调控建议,并展望了未来人体砷暴露风险评估工作的发展方向。

English Abstract

参考文献 (96)

返回顶部

目录

/

返回文章
返回