背角无齿蚌铁蛋白基因的克隆及Fe3+和Cd2+对其表达的影响

薛士鹏, 连云峰, 刘庆春, 夏西超. 背角无齿蚌铁蛋白基因的克隆及Fe3+和Cd2+对其表达的影响[J]. 生态毒理学报, 2024, 19(5): 201-212. doi: 10.7524/AJE.1673-5897.20240411001
引用本文: 薛士鹏, 连云峰, 刘庆春, 夏西超. 背角无齿蚌铁蛋白基因的克隆及Fe3+和Cd2+对其表达的影响[J]. 生态毒理学报, 2024, 19(5): 201-212. doi: 10.7524/AJE.1673-5897.20240411001
Xue Shipeng, Lian Yunfeng, Liu Qingchun, Xia Xichao. Cloning Characterizations of Ferritin Gene from Freshwater Clam Anodonta woodiana and Effect of Fe3+ and Cd2+ on Expressions of Ferritin[J]. Asian journal of ecotoxicology, 2024, 19(5): 201-212. doi: 10.7524/AJE.1673-5897.20240411001
Citation: Xue Shipeng, Lian Yunfeng, Liu Qingchun, Xia Xichao. Cloning Characterizations of Ferritin Gene from Freshwater Clam Anodonta woodiana and Effect of Fe3+ and Cd2+ on Expressions of Ferritin[J]. Asian journal of ecotoxicology, 2024, 19(5): 201-212. doi: 10.7524/AJE.1673-5897.20240411001

背角无齿蚌铁蛋白基因的克隆及Fe3+和Cd2+对其表达的影响

    作者简介: 薛士鹏(1983-),男,硕士研究生,研究方向为生态毒理学,E-mail:409195235@qq.com
    通讯作者: 夏西超,E-mail:xiaxichao8336@163.com
  • 基金项目:

    河南省科技攻关项目(212102310845)

  • 中图分类号: X171.5

Cloning Characterizations of Ferritin Gene from Freshwater Clam Anodonta woodiana and Effect of Fe3+ and Cd2+ on Expressions of Ferritin

    Corresponding author: Xia Xichao, xiaxichao8336@163.com
  • Fund Project:
  • 摘要: 铁蛋白在参与铁稳态调控、细胞增殖、蛋白质翻译和免疫应答过程中发挥积极作用。为了探讨Fe3+和Cd2+对背角无齿蚌(Anodonta woodiana)的分子毒理效应,克隆出AwFer1AwFer2全基因序列,分析Fe3+和Cd2+AwFer1AwFer2表达的影响。结果显示,在本研究中AwFer1包含780个碱基的核苷酸序列,174个氨基酸编码的开放阅读框;AwFer2包含874个碱基的核苷酸序列,174个氨基酸组成的开放阅读框。AwFer1AwFer2具有高度保守的铁反应元件序列,5’非编码区共有序列上游存在一个CAGUGA茎环结构和2个凸起点,蛋白序列包括一个铁结合区域标签(59EEREHAEKFMKYQNKRGGR77)。与对照组相比,Fe3+和Cd2+处理组动物肝胰脏和鳃中AwFer1AwFer2表达水平显著上调。以上结果表明,Fe3+和Cd2+处理对背角无齿蚌AwFer1AwFer2表达水平具有显著的诱导作用,其原因与维持机体内铁的稳态效应和免疫防御作用有关。
  • 加载中
  • Keenan J I, Davis K A, Beaugie C R, et al. Alterations in Helicobacter pylori outer membrane and outer membrane vesicle-associated lipopolysaccharides under iron-limiting growth conditions[J]. Innate Immunity, 2008, 14(5): 279-290
    Cullis J O, Fitzsimons E J, Griffiths W J, et al. Investigation and management of a raised serum ferritin[J]. British Journal of Haematology, 2018, 181(3): 331-340
    Li M, Saren G W, Zhang S C. Identification and expression of a ferritin homolog in amphioxus Branchiostoma belcheri: Evidence for its dual role in immune response and iron metabolism[J]. Comparative Biochemistry and Physiology Part B, Biochemistry & Molecular Biology, 2008, 150(3): 263-270
    Salinas-Clarot K, Gutiérrez A P, Núñez-Acuña G, et al. Molecular characterization and gene expression of ferritin in red abalone (Haliotis rufescens)[J]. Fish & Shellfish Immunology, 2011, 30(1): 430-433
    Piazza M, Damore G, Costa B, et al. Hemin and a metabolic derivative coprohemin modulate the TLR4 pathway differently through different molecular targets[J]. Innate Immunity, 2011, 17(3): 293-301
    Cozzi A, Levi S, Corsi B, et al. Role of iron and ferritin in TNFα-induced apoptosis in HeLa cells[J]. FEBS Letters, 2003, 537(1/3): 187-192
    Suchdev P S, Williams A M, Mei Z G, et al. Assessment of iron status in settings of inflammation: Challenges and potential approaches[J]. The American Journal of Clinical Nutrition, 2017, 106(Suppl.6): 1626S-1633S
    Kruzel M L, Actor J K, Radak Z, et al. Lactoferrin decreases LPS-induced mitochondrial dysfunction in cultured cells and in animal endotoxemia model[J]. Innate Immunity, 2010, 16(2): 67-79
    Yen Le T T, Zimmermann S, Sures B. How does the metallothionein induction in bivalves meet the criteria for biomarkers of metal exposure?[J]. Environmental Pollution, 2016, 212: 257-268
    Suárez-Ulloa V, Fernández-Tajes J, Manfrin C, et al. Bivalve omics: State of the art and potential applications for the biomonitoring of harmful marine compounds[J]. Marine Drugs, 2013, 11(11): 4370-4389
    Zhang X F, Liu Z W, Jeppesen E, et al. Effects of deposit-feeding tubificid worms and filter-feeding bivalves on benthic-pelagic coupling: Implications for the restoration of eutrophic shallow lakes[J]. Water Research, 2014, 50: 135-146
    Chen J, Xie P. Seasonal dynamics of the hepatotoxicmicrocystins in various organs of four freshwater bivalves from the large eutrophic lake Taihu of subtropical China and the risk to human consumption[J]. Environmental Toxicology, 2005, 20(6): 572-584
    张明霞, 张科, 袁凤娟, 等. 背角无齿蚌钙调蛋白基因的克隆及Ca2+和Cd2+对其表达的影响[J]. 生态毒理学报, 2021, 16(3): 227-238

    Zhang M X, Zhang K, Yuan F J, et al. Characterization of AwCaM1 from freshwater clam Anodonta woodiana and effect of Ca2+ and Cd2+ on its expressions[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 227-238(in Chinese)

    Feng J R, Ni H G. Effects of heavy metals and metalloids on the biodegradation of organic contaminants[J]. Environmental Research, 2024, 246: 118069
    Li J, Li L, Zhang S D, et al. Three ferritin subunits involved in immune defense from bay scallop Argopecten irradians[J]. Fish & Shellfish Immunology, 2012, 32(2): 368-372
    De Zoysa M, Lee J. Two ferritin subunits from disk abalone (Haliotis discus discus): Cloning, characterization and expression analysis[J]. Fish & Shellfish Immunology, 2007, 23(3): 624-635
    Zhang L B, Sun W, Cai W G, et al. Differential response of two ferritin subunit genes (VpFer1 and VpFer2) from Venerupis philippinarum following pathogen and heavy metals challenge[J]. Fish & Shellfish Immunology, 2013, 35(5): 1658-1662
    Buetler T M, Eaton D L. Glutathione S-transferases: Amino acid sequence comparison, classification and phylogenetic relationship[J]. Journal of Environmental Science and Health, Part C, 1992, 10(2): 181-203
    Arosio P, Ingrassia R, Cavadini P. Ferritins: A family of molecules for iron storage, antioxidation and more[J].Biochimica et Biophysica Acta, 2009, 1790(7): 589-599
    Heshmati A, Karami-Momtaz J, Nili-Ahmadabadi A, et al. Dietary exposure to toxic and essential trace elements by consumption of wild and farmed carp (Cyprinus carpio) and Caspian kutum (Rutilus frisii Kutum) in Iran[J]. Chemosphere, 2017, 173: 207-215
    Chen F, Luo Z, Fan Y F, et al. Five metal elements homeostasis-related genes in Synechogobius hasta: Molecular characterization, tissue expression and transcriptional response to Cu and Fe exposure[J]. Chemosphere, 2016, 159: 392-402
    Putburee R, Jetsrisuparb A, Fucharoen S, et al. Mitochondrial ferritin expression in erythroid cells from patients with alpha-thalassaemia[J]. Hematology, 2018, 23(10): 844-848
    de Almeida E A, Miyamoto S, Bainy A C D, et al. Protective effect of phospholipid hydroperoxide glutathione peroxidase (PHGPx) against lipid peroxidation in mussels Perna perna exposed to different metals[J]. Marine Pollution Bulletin, 2004, 49(5/6): 386-392
    Evariste L, Rioult D, Brousseau P, et al. Differential sensitivity to cadmium of immunomarkers measured in hemocyte subpopulations of zebra mussel Dreissena polymorpha[J]. Ecotoxicology and Environmental Safety, 2017, 137: 78-85
    Wu H F, Xu L L, Yu D L, et al. Differential metabolic responses in three life stages of mussels Mytilus galloprovincialis exposed to cadmium[J]. Ecotoxicology, 2017, 26(1): 74-80
    Wu H F, Xu L L, Ji C L, et al. Proteomic and metabolomic responses in D-shape larval mussels Mytilus galloprovincialis exposed to cadmium and arsenic[J]. Fish & Shellfish Immunology, 2016, 58: 514-520
    Zhu B, Lin Q, Ke C H, et al. Single subunit type of ferritin from visceral mass of Saccostrea cucullata: Cloning, expression and cisplatin-subunit analysis[J]. Fish & Shellfish Immunology, 2011, 31(3): 453-461
    Zhang J Q, Li F H, Wang Z Z, et al. Cloning, expression and identification of ferritin from Chinese shrimp, Fenneropenaeus chinensis[J]. Journal of Biotechnology, 2006, 125(2): 173-184
  • 加载中
计量
  • 文章访问数:  394
  • HTML全文浏览数:  394
  • PDF下载数:  167
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-04-11
薛士鹏, 连云峰, 刘庆春, 夏西超. 背角无齿蚌铁蛋白基因的克隆及Fe3+和Cd2+对其表达的影响[J]. 生态毒理学报, 2024, 19(5): 201-212. doi: 10.7524/AJE.1673-5897.20240411001
引用本文: 薛士鹏, 连云峰, 刘庆春, 夏西超. 背角无齿蚌铁蛋白基因的克隆及Fe3+和Cd2+对其表达的影响[J]. 生态毒理学报, 2024, 19(5): 201-212. doi: 10.7524/AJE.1673-5897.20240411001
Xue Shipeng, Lian Yunfeng, Liu Qingchun, Xia Xichao. Cloning Characterizations of Ferritin Gene from Freshwater Clam Anodonta woodiana and Effect of Fe3+ and Cd2+ on Expressions of Ferritin[J]. Asian journal of ecotoxicology, 2024, 19(5): 201-212. doi: 10.7524/AJE.1673-5897.20240411001
Citation: Xue Shipeng, Lian Yunfeng, Liu Qingchun, Xia Xichao. Cloning Characterizations of Ferritin Gene from Freshwater Clam Anodonta woodiana and Effect of Fe3+ and Cd2+ on Expressions of Ferritin[J]. Asian journal of ecotoxicology, 2024, 19(5): 201-212. doi: 10.7524/AJE.1673-5897.20240411001

背角无齿蚌铁蛋白基因的克隆及Fe3+和Cd2+对其表达的影响

    通讯作者: 夏西超,E-mail:xiaxichao8336@163.com
    作者简介: 薛士鹏(1983-),男,硕士研究生,研究方向为生态毒理学,E-mail:409195235@qq.com
  • 1. 南阳医学高等专科学校, 南阳 473061;
  • 2. 中国科学院生态环境研究中心, 北京 100085
基金项目:

河南省科技攻关项目(212102310845)

摘要: 铁蛋白在参与铁稳态调控、细胞增殖、蛋白质翻译和免疫应答过程中发挥积极作用。为了探讨Fe3+和Cd2+对背角无齿蚌(Anodonta woodiana)的分子毒理效应,克隆出AwFer1AwFer2全基因序列,分析Fe3+和Cd2+AwFer1AwFer2表达的影响。结果显示,在本研究中AwFer1包含780个碱基的核苷酸序列,174个氨基酸编码的开放阅读框;AwFer2包含874个碱基的核苷酸序列,174个氨基酸组成的开放阅读框。AwFer1AwFer2具有高度保守的铁反应元件序列,5’非编码区共有序列上游存在一个CAGUGA茎环结构和2个凸起点,蛋白序列包括一个铁结合区域标签(59EEREHAEKFMKYQNKRGGR77)。与对照组相比,Fe3+和Cd2+处理组动物肝胰脏和鳃中AwFer1AwFer2表达水平显著上调。以上结果表明,Fe3+和Cd2+处理对背角无齿蚌AwFer1AwFer2表达水平具有显著的诱导作用,其原因与维持机体内铁的稳态效应和免疫防御作用有关。

English Abstract

参考文献 (28)

返回顶部

目录

/

返回文章
返回