长期微塑料暴露对小鼠肠道炎症水平及菌群的影响
Effect of Long-term Exposure to Microplastics on Intestine Inflammatory Level and Gut Microbiota in Mice
-
摘要: 长期暴露微塑料会影响机体免疫功能进而发生炎症反应,其致炎机制有待研究。本研究以C57BL/6J小鼠为研究对象,将直径为1 μm和5 μm的单分散荧光聚苯乙烯微球用灌胃的方法对小鼠进行慢性暴露,30周后探究微塑料长期暴露对小鼠炎症细胞因子、肠组织形态以及菌群的影响。结果表明,与正常对照组相比,微塑料显著增加了小鼠血清促炎细胞因子1L-1β水平,小肠和结肠组织炎症细胞浸润明显;暴露组肠菌群α多样性显著降低,Actinobacteria显著下降;属水平上Clostridia_UCG-014和Bifidobacterium等有益菌的相对丰度显著下降,Lactobacillus与炎症细胞因子TNF-α、1L-1β呈显著负相关。综上,微塑料长期暴露可能通过影响肠道有益菌丰度,降低肠道菌群的α多样性,导致肠道菌群结构紊乱,从而增加小鼠炎症因子的表达水平,促进小鼠肠道炎症反应。Abstract: Long-term exposure to microplastics might affect the immune function and lead to inflammation. The mechanism needs to be investigated. In this study, C57BL/6J mice were exposed to monodisperse fluorescent polystyrene microspheres with diameters of 1 μm and 5 μm by gastric gavage chronically. The effects of persistent exposure to microplastics on inflammatory cytokines, intestinal tissue morphology, and gut microbiota of the mice were studied after thirty weeks. The results showed that compared to the control group, microplastics increased the level of 1L-1β in serum significantly, and the inflammatory cell infiltration in the intestine and colon was obvious; the alpha diversity of the gut microbiota in the exposure group was significantly reduced, and the relative abundance of Actinobacteria was significantly decreased; at the genus level, the relative abundance of probiotics such as Clostridia_UCG-014 and Bifidobacterium decreased significantly, and Lactobacillus showed a significant negative correlation with TNF-α and 1L-1β. In conclusion, long-term exposure to microplastics reduced the diversity of gut microbiota, affected the abundance of intestinal probiotics and caused the disturbance of bacterial composition. It also increases the expression levels of inflammatory factors and induces intestinal inflammatory responses in mice.
-
Key words:
- microplastics /
- mice /
- chronic toxicity /
- intestinal inflammation /
- gut microbiota
-
-
Gigault J, Halle A T, Baudrimont M, et al. Current opinion: What is a nanoplastic?[J]. Environmental Pollution, 2018, 235: 1030-1034 Mao X, Xu Y C, Cheng Z, et al. The impact of microplastic pollution on ecological environment: A review[J]. Frontiers in Bioscience, 2022, 27(2): 46 Yan Z H, Liu Y F, Zhang T, et al. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status[J]. Environmental Science & Technology, 2022, 56(1): 414-421 Zhao Y, Liu S J, Xu H Y. Effects of microplastic and engineered nanomaterials on inflammatory bowel disease: A review[J]. Chemosphere, 2023, 326: 138486 Hu M Y, Palić D A. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways[J]. Redox Biology, 2020, 37: 101620 Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature[J]. Particle and Fibre Toxicology, 2020, 17(1): 57 Quigley E M M. Gut bacteria in health and disease[J]. Gastroenterology & Hepatology, 2013, 9(9): 560-569 Quaglio A E V, Grillo T G, De Oliveira E C S, et al. Gut microbiota, inflammatory bowel disease and colorectal cancer[J]. World Journal of Gastroenterology, 2022, 28(30): 4053-4060 孙凡晰, 齐鑫, 王靖, 等. 微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展[J]. 生态毒理学报, 2023, 18(4): 131-147 Sun F X, Qi X, Wang J, et al. Mechanism of toxic effects of microplastics and nano-plastics on gastro-intestinal tract and liver: A review[J]. Asian Journal of Ecotoxicology, 2023, 18(4): 131-147(in Chinese)
Neurath M F. Targeting immune cell circuits and trafficking in inflammatory bowel disease[J]. Nature Immunology, 2019, 20(8): 970-979 Hu J L, Duan Y P, Zhong H N, et al. Analysis of microplastics released from plastic take-out food containers based on thermal properties and morphology study[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2023, 40(2): 305-318 国家质量监督检验检疫总局, 国家标准化管理委员会. 化学品啮齿类动物亚慢性经口毒性试验方法: GB/T 21763—2008[S]. 北京: 中国标准出版社, 2008 Liu L, Liu B Y, Zhang B W, et al. Polystyrene micro(nano) plastics damage the organelles of RBL-2H3 cells and promote MOAP-1 to induce apoptosis[J]. Journal of Hazardous Materials, 2022, 438: 129550 Shi X R, Wang X N, Huang R, et al. Cytotoxicity and genotoxicity of polystyrene micro- and nanoplastics with different size and surface modification in A549 cells[J]. International Journal of Nanomedicine, 2022, 17: 4509-4523 Zheng D P, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease[J]. Cell Research, 2020, 30(6): 492-506 Zhou B L, Yuan Y T, Zhang S S, et al. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract[J]. Frontiers in Immunology, 2020, 11: 575 Vlantis K, Polykratis A, Welz P S, et al. TLR-independent anti-inflammatory function of intestinal epithelial TRAF6 signalling prevents DSS-induced colitis in mice[J]. Gut, 2016, 65(6): 935-943 Hou M M, Xu C S, Zou X H, et al. Long-term exposure to microplastics induces intestinal function dysbiosis in rare minnow (Gobiocypris rarus)[J]. Ecotoxicology and Environmental Safety, 2022, 246: 114157 Solomando A, Capó X, Alomar C, et al. Long-term exposure to microplastics induces oxidative stress and a pro-inflammatory response in the gut of Sparus aurata Linnaeus, 1758[J]. Environmental Pollution, 2020, 266(Pt 1): 115295 Chassaing B, Koren O, Goodrich J K, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome[J]. Nature, 2015, 519(7541): 92-96 Le Chatelier E, Nielsen T, Qin J J, et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature, 2013, 500(7464): 541-546 Lozupone C A, Stombaugh J I, Gordon J I, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230 Vetrani C, Di Nisio A, Paschou S A, et al. From gut microbiota through low-grade inflammation to obesity: Key players and potential targets[J]. Nutrients, 2022, 14(10): 2103 Samara J, Moossavi S, Alshaikh B, et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants[J]. Cell Host & Microbe, 2022, 30(5): 696-711.e5 Liu Y L, Zhou M Y, Yang M, et al. Pulsatilla chinensis saponins ameliorate inflammation and DSS-induced ulcerative colitis in rats by regulating the composition and diversity of intestinal flora[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 728929 Lv Z, Liu R D, Su K Q, et al. Acupuncture ameliorates breast cancer-related fatigue by regulating the gut microbiota-gut-brain axis[J]. Frontiers in Endocrinology, 2022, 13: 921119 Schirmer M, Garner A, Vlamakis H, et al. Microbial genes and pathways in inflammatory bowel disease[J]. Nature Reviews Microbiology, 2019, 17(8): 497-511 Ismael M, Gu Y X, Cui Y L, et al. Probiotic of Lactiplantibacillus plantarum NWAFU-BIO-BS29 isolated from Chinese traditional fermented milk and its potential therapeutic applications based on gut microbiota regulation[J]. Foods, 2022, 11(23): 3766 Lakhtin M, Alyoshkin V, Lakhtin V, et al. Probiotic Lactobacillus and bifidobacterial lectins against Candida albicans and Staphylococcus aureus clinical strains: New class of the pathogen biofilm destructors[J]. Probiotics and Antimicrobial Proteins, 2010, 2(3): 186-196 Pridmore R D, Pittet A C, Praplan F, et al. Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity[J]. FEMS Microbiology Letters, 2008, 283(2): 210-215 Chea J D, Yenkie K M, Stanzione J F 3rd, et al. A generic scenario analysis of end-of-life plastic management: Chemical additives[J]. Journal of Hazardous Materials, 2023, 441: 129902 Schrank I, Trotter B, Dummert J, et al. Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna[J]. Environmental Pollution, 2019, 255: 113233 华英迪, 许宜平, 赵高峰, 等. 塑料添加剂的环境迁移、毒性测试与风险筛查: 进展与挑战[J]. 生态毒理学报, 2024, 19(2): 93-111 Hua Y D, Xu Y P, Zhao G F, et al. Environmental migration, toxicity testing and risk screening for plastic additives: Advances and challenges[J]. Asian Journal of Ecotoxicology, 2024, 19(2): 93-111(in Chinese)
-

计量
- 文章访问数: 810
- HTML全文浏览数: 810
- PDF下载数: 170
- 施引文献: 0