长期微塑料暴露对小鼠肠道炎症水平及菌群的影响

詹安宁, 郑梦瑶, 李博, 赵可姝, 王琦, 柏桦. 长期微塑料暴露对小鼠肠道炎症水平及菌群的影响[J]. 生态毒理学报, 2024, 19(5): 256-263. doi: 10.7524/AJE.1673-5897.20240417001
引用本文: 詹安宁, 郑梦瑶, 李博, 赵可姝, 王琦, 柏桦. 长期微塑料暴露对小鼠肠道炎症水平及菌群的影响[J]. 生态毒理学报, 2024, 19(5): 256-263. doi: 10.7524/AJE.1673-5897.20240417001
Zhan Anning, Zheng Mengyao, Li Bo, Zhao Keshu, Wang Qi, Bai Hua. Effect of Long-term Exposure to Microplastics on Intestine Inflammatory Level and Gut Microbiota in Mice[J]. Asian journal of ecotoxicology, 2024, 19(5): 256-263. doi: 10.7524/AJE.1673-5897.20240417001
Citation: Zhan Anning, Zheng Mengyao, Li Bo, Zhao Keshu, Wang Qi, Bai Hua. Effect of Long-term Exposure to Microplastics on Intestine Inflammatory Level and Gut Microbiota in Mice[J]. Asian journal of ecotoxicology, 2024, 19(5): 256-263. doi: 10.7524/AJE.1673-5897.20240417001

长期微塑料暴露对小鼠肠道炎症水平及菌群的影响

    作者简介: 詹安宁(2000-),男,硕士研究生,研究方向为环境暴露与健康,E-mail:zanzandbl@163.com
    通讯作者: 王琦,E-mail:lwangqi@163.com;  柏桦,E-mail:baihua@kmmu.edu.cn
  • 基金项目:

    云南省科技厅重点研发计划社会发展项目(202403AC100007);云南省应用基础研究昆明医科大学联合专项课题(202201AY070001-025);云南省教育厅公共卫生与疾病防控重点实验室重点课题(2023ZD02/2023ZD05)

  • 中图分类号: X171.5

Effect of Long-term Exposure to Microplastics on Intestine Inflammatory Level and Gut Microbiota in Mice

    Corresponding authors: Wang Qi ;  Bai Hua
  • Fund Project:
  • 摘要: 长期暴露微塑料会影响机体免疫功能进而发生炎症反应,其致炎机制有待研究。本研究以C57BL/6J小鼠为研究对象,将直径为1 μm和5 μm的单分散荧光聚苯乙烯微球用灌胃的方法对小鼠进行慢性暴露,30周后探究微塑料长期暴露对小鼠炎症细胞因子、肠组织形态以及菌群的影响。结果表明,与正常对照组相比,微塑料显著增加了小鼠血清促炎细胞因子1L-1β水平,小肠和结肠组织炎症细胞浸润明显;暴露组肠菌群α多样性显著降低,Actinobacteria显著下降;属水平上Clostridia_UCG-014Bifidobacterium等有益菌的相对丰度显著下降,Lactobacillus与炎症细胞因子TNF-α、1L-1β呈显著负相关。综上,微塑料长期暴露可能通过影响肠道有益菌丰度,降低肠道菌群的α多样性,导致肠道菌群结构紊乱,从而增加小鼠炎症因子的表达水平,促进小鼠肠道炎症反应。
  • 加载中
  • Gigault J, Halle A T, Baudrimont M, et al. Current opinion: What is a nanoplastic?[J]. Environmental Pollution, 2018, 235: 1030-1034
    Mao X, Xu Y C, Cheng Z, et al. The impact of microplastic pollution on ecological environment: A review[J]. Frontiers in Bioscience, 2022, 27(2): 46
    Yan Z H, Liu Y F, Zhang T, et al. Analysis of microplastics in human feces reveals a correlation between fecal microplastics and inflammatory bowel disease status[J]. Environmental Science & Technology, 2022, 56(1): 414-421
    Zhao Y, Liu S J, Xu H Y. Effects of microplastic and engineered nanomaterials on inflammatory bowel disease: A review[J]. Chemosphere, 2023, 326: 138486
    Hu M Y, Palić D A. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways[J]. Redox Biology, 2020, 37: 101620
    Hirt N, Body-Malapel M. Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature[J]. Particle and Fibre Toxicology, 2020, 17(1): 57
    Quigley E M M. Gut bacteria in health and disease[J]. Gastroenterology & Hepatology, 2013, 9(9): 560-569
    Quaglio A E V, Grillo T G, De Oliveira E C S, et al. Gut microbiota, inflammatory bowel disease and colorectal cancer[J]. World Journal of Gastroenterology, 2022, 28(30): 4053-4060
    孙凡晰, 齐鑫, 王靖, 等. 微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展[J]. 生态毒理学报, 2023, 18(4): 131-147

    Sun F X, Qi X, Wang J, et al. Mechanism of toxic effects of microplastics and nano-plastics on gastro-intestinal tract and liver: A review[J]. Asian Journal of Ecotoxicology, 2023, 18(4): 131-147(in Chinese)

    Neurath M F. Targeting immune cell circuits and trafficking in inflammatory bowel disease[J]. Nature Immunology, 2019, 20(8): 970-979
    Hu J L, Duan Y P, Zhong H N, et al. Analysis of microplastics released from plastic take-out food containers based on thermal properties and morphology study[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2023, 40(2): 305-318
    国家质量监督检验检疫总局, 国家标准化管理委员会. 化学品啮齿类动物亚慢性经口毒性试验方法: GB/T 21763—2008[S]. 北京: 中国标准出版社, 2008
    Liu L, Liu B Y, Zhang B W, et al. Polystyrene micro(nano) plastics damage the organelles of RBL-2H3 cells and promote MOAP-1 to induce apoptosis[J]. Journal of Hazardous Materials, 2022, 438: 129550
    Shi X R, Wang X N, Huang R, et al. Cytotoxicity and genotoxicity of polystyrene micro- and nanoplastics with different size and surface modification in A549 cells[J]. International Journal of Nanomedicine, 2022, 17: 4509-4523
    Zheng D P, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease[J]. Cell Research, 2020, 30(6): 492-506
    Zhou B L, Yuan Y T, Zhang S S, et al. Intestinal flora and disease mutually shape the regional immune system in the intestinal tract[J]. Frontiers in Immunology, 2020, 11: 575
    Vlantis K, Polykratis A, Welz P S, et al. TLR-independent anti-inflammatory function of intestinal epithelial TRAF6 signalling prevents DSS-induced colitis in mice[J]. Gut, 2016, 65(6): 935-943
    Hou M M, Xu C S, Zou X H, et al. Long-term exposure to microplastics induces intestinal function dysbiosis in rare minnow (Gobiocypris rarus)[J]. Ecotoxicology and Environmental Safety, 2022, 246: 114157
    Solomando A, Capó X, Alomar C, et al. Long-term exposure to microplastics induces oxidative stress and a pro-inflammatory response in the gut of Sparus aurata Linnaeus, 1758[J]. Environmental Pollution, 2020, 266(Pt 1): 115295
    Chassaing B, Koren O, Goodrich J K, et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome[J]. Nature, 2015, 519(7541): 92-96
    Le Chatelier E, Nielsen T, Qin J J, et al. Richness of human gut microbiome correlates with metabolic markers[J]. Nature, 2013, 500(7464): 541-546
    Lozupone C A, Stombaugh J I, Gordon J I, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230
    Vetrani C, Di Nisio A, Paschou S A, et al. From gut microbiota through low-grade inflammation to obesity: Key players and potential targets[J]. Nutrients, 2022, 14(10): 2103
    Samara J, Moossavi S, Alshaikh B, et al. Supplementation with a probiotic mixture accelerates gut microbiome maturation and reduces intestinal inflammation in extremely preterm infants[J]. Cell Host & Microbe, 2022, 30(5): 696-711.e5
    Liu Y L, Zhou M Y, Yang M, et al. Pulsatilla chinensis saponins ameliorate inflammation and DSS-induced ulcerative colitis in rats by regulating the composition and diversity of intestinal flora[J]. Frontiers in Cellular and Infection Microbiology, 2021, 11: 728929
    Lv Z, Liu R D, Su K Q, et al. Acupuncture ameliorates breast cancer-related fatigue by regulating the gut microbiota-gut-brain axis[J]. Frontiers in Endocrinology, 2022, 13: 921119
    Schirmer M, Garner A, Vlamakis H, et al. Microbial genes and pathways in inflammatory bowel disease[J]. Nature Reviews Microbiology, 2019, 17(8): 497-511
    Ismael M, Gu Y X, Cui Y L, et al. Probiotic of Lactiplantibacillus plantarum NWAFU-BIO-BS29 isolated from Chinese traditional fermented milk and its potential therapeutic applications based on gut microbiota regulation[J]. Foods, 2022, 11(23): 3766
    Lakhtin M, Alyoshkin V, Lakhtin V, et al. Probiotic Lactobacillus and bifidobacterial lectins against Candida albicans and Staphylococcus aureus clinical strains: New class of the pathogen biofilm destructors[J]. Probiotics and Antimicrobial Proteins, 2010, 2(3): 186-196
    Pridmore R D, Pittet A C, Praplan F, et al. Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity[J]. FEMS Microbiology Letters, 2008, 283(2): 210-215
    Chea J D, Yenkie K M, Stanzione J F 3rd, et al. A generic scenario analysis of end-of-life plastic management: Chemical additives[J]. Journal of Hazardous Materials, 2023, 441: 129902
    Schrank I, Trotter B, Dummert J, et al. Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna[J]. Environmental Pollution, 2019, 255: 113233
    华英迪, 许宜平, 赵高峰, 等. 塑料添加剂的环境迁移、毒性测试与风险筛查: 进展与挑战[J]. 生态毒理学报, 2024, 19(2): 93-111

    Hua Y D, Xu Y P, Zhao G F, et al. Environmental migration, toxicity testing and risk screening for plastic additives: Advances and challenges[J]. Asian Journal of Ecotoxicology, 2024, 19(2): 93-111(in Chinese)

  • 加载中
计量
  • 文章访问数:  810
  • HTML全文浏览数:  810
  • PDF下载数:  170
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-04-17
詹安宁, 郑梦瑶, 李博, 赵可姝, 王琦, 柏桦. 长期微塑料暴露对小鼠肠道炎症水平及菌群的影响[J]. 生态毒理学报, 2024, 19(5): 256-263. doi: 10.7524/AJE.1673-5897.20240417001
引用本文: 詹安宁, 郑梦瑶, 李博, 赵可姝, 王琦, 柏桦. 长期微塑料暴露对小鼠肠道炎症水平及菌群的影响[J]. 生态毒理学报, 2024, 19(5): 256-263. doi: 10.7524/AJE.1673-5897.20240417001
Zhan Anning, Zheng Mengyao, Li Bo, Zhao Keshu, Wang Qi, Bai Hua. Effect of Long-term Exposure to Microplastics on Intestine Inflammatory Level and Gut Microbiota in Mice[J]. Asian journal of ecotoxicology, 2024, 19(5): 256-263. doi: 10.7524/AJE.1673-5897.20240417001
Citation: Zhan Anning, Zheng Mengyao, Li Bo, Zhao Keshu, Wang Qi, Bai Hua. Effect of Long-term Exposure to Microplastics on Intestine Inflammatory Level and Gut Microbiota in Mice[J]. Asian journal of ecotoxicology, 2024, 19(5): 256-263. doi: 10.7524/AJE.1673-5897.20240417001

长期微塑料暴露对小鼠肠道炎症水平及菌群的影响

    通讯作者: 王琦,E-mail:lwangqi@163.com;  柏桦,E-mail:baihua@kmmu.edu.cn
    作者简介: 詹安宁(2000-),男,硕士研究生,研究方向为环境暴露与健康,E-mail:zanzandbl@163.com
  • 1. 昆明医科大学, 云南省公共卫生与生物安全重点实验室, 昆明 650500;
  • 2. 昆明医科大学第二附属医院, 昆明 650106
基金项目:

云南省科技厅重点研发计划社会发展项目(202403AC100007);云南省应用基础研究昆明医科大学联合专项课题(202201AY070001-025);云南省教育厅公共卫生与疾病防控重点实验室重点课题(2023ZD02/2023ZD05)

摘要: 长期暴露微塑料会影响机体免疫功能进而发生炎症反应,其致炎机制有待研究。本研究以C57BL/6J小鼠为研究对象,将直径为1 μm和5 μm的单分散荧光聚苯乙烯微球用灌胃的方法对小鼠进行慢性暴露,30周后探究微塑料长期暴露对小鼠炎症细胞因子、肠组织形态以及菌群的影响。结果表明,与正常对照组相比,微塑料显著增加了小鼠血清促炎细胞因子1L-1β水平,小肠和结肠组织炎症细胞浸润明显;暴露组肠菌群α多样性显著降低,Actinobacteria显著下降;属水平上Clostridia_UCG-014Bifidobacterium等有益菌的相对丰度显著下降,Lactobacillus与炎症细胞因子TNF-α、1L-1β呈显著负相关。综上,微塑料长期暴露可能通过影响肠道有益菌丰度,降低肠道菌群的α多样性,导致肠道菌群结构紊乱,从而增加小鼠炎症因子的表达水平,促进小鼠肠道炎症反应。

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回