湖泊环境因子空间异质性及其对食物网结构的影响研究—以白洋淀为例
Spatial Heterogeneity of Lake Environmental Factors and Their Effects on Food Web Structure: A Case Study of Baiyangdian Lake
-
摘要: 湖泊环境因子变化会影响食物网和生态系统结构。为了明晰湖泊环境因子空间变化对食物网结构的影响,本研究选取白洋淀为研究区,分别于2018年4月(春季)和8月(夏季)采集水体、沉积物和生物样品。淀区共设置32个采样点,根据土地利用类型划分为3个不同区域:重度干扰区(生境1)、中度干扰区(生境2)和轻度干扰区(生境3)。本研究分析了水体、沉积物的主要理化因子和食物网结构的时空变化,利用模糊聚类法阐明环境因子空间变化对食物网结构的影响,运用空间自相关分析环境因子的空间异质性,利用典范对应分析(canonical correspondence analysis, CCA)和偏最小二乘回归分析识别影响食物网结构的关键环境因子。结果表明:(1)就物理生境条件而言,水深(water depth, WD)、pH、温度(temperature, T)、透明度(transparence, Tran)和溶解氧(dissolved oxygen, DO)最大值均在生境3;而就水化学条件而言,总氮(total nitrogen, TNsediment)、总磷(total phosphorus, TPsediment)和总有机碳(total organic carbon, TOCs)最大值均在生境2;(2)模糊聚类分析表明,环境因子数值越大,食物网结构特征指数越低,食物网结构越不稳定;(3)空间自相关分析表明,T、Tran、pH和化学需氧量(chemical oxygen demand, COD)莫兰指数分别为0.14、0.10、0.44和0.37,其值呈现正相关,在空间上形成高低聚类;(4)CCA和偏最小二乘回归分析结果表明,WD、TPwater、TNsediment和T是影响白洋淀食物网结构的关键环境因子。因此,在全球气候变化和快速城市化背景下,应重点监测T、WD和营养盐。Abstract: The changes in environmental factors can influence the food web and ecosystem structure of lake ecosystems. In order to clarify the impacts of spatial changes of environmental factors on food web structure, Baiyangdian Lake was selected as the study area, and the water, sediment, and biological samples were collected in April (spring) and August (summer) 2018, respectively. 32 sampling sites were set up in the lake, which can be divided into 3 different areas according to land use: high-level disturbance area (Habitat 1), middle-level disturbance area (Habitat 2), and low-level disturbance area (Habitat 3). First, the study analyzed the spatial and temporal changes of major physicochemical factors in water and sediment and dominant biological populations. Fuzzy clustering method was used to elucidate the effects of spatial changes for environmental factors on the structure of food web. Spatial autocorrelation analysis was used to analyze the spatial heterogeneity of environmental factors. Canonical correspondence analysis (CCA) and partial least squares regression analysis were applied to identify the key factors influencing the structure of food web. The results showed that: (1) in terms of physical habitat conditions, the maximum values of water depth (WD), pH, temperature (T), transparency (Tran), and dissolved oxygen (DO) were found in habitat 3; in terms of chemical parameters, the maximum values of total nitrogen (TNsediment), total phosphorus (TPsediment), and total organic carbon (TOCs) were found in habitat 2; (2) fuzzy cluster analysis showed that with the environmental factors increasing, the structural characteristic index of food web decreased, and the food web structure was unstable; (3) spatial autocorrelation analysis showed that the Moran index of T, Tran, pH, and chemical oxygen demand (COD) were 0.14, 0.10, 0.44 and 0.37, respectively indicating a positive correlation and high-low cluster in space; (4) the results of CCA and partial least squares regression analysis showed that WD, TPwater, TNsediment, and T were the key factors affecting the structure of food web in Baiyangdian Lake. Therefore, in the context of global climate change and rapid urbanization, more attention should be paid to T, WD, and nutrients.
-
Key words:
- Baiyangdian Lake /
- environmental factors /
- spatial heterogeneity /
- food web structure /
- ecosystem
-
-
李琳琳, 王国清, 秦攀, 等. 白洋淀水环境状况与治理保护对策[J]. 科技导报, 2019, 37(21): 14-25 Li L L, Wang G Q, Qin P, et al. Water environment situation and treatment and protection measures of Baiyangdian Lake[J]. Science and Technology Review, 2019, 39(21): 14-25(in Chinese)
张素珍, 田建文, 李贵宝. 白洋淀湿地面临的生态问题及生态恢复措施[J]. 水土保持通报, 2007, 27(3): 146-150 Zhang S Z, Tian J W, Li G B. Ecological problems and restoration measures of Baiyangdian wetland[J]. Bulletin of Soil and Water Conservation, 2007, 27(3): 146-150(in Chinese)
李娜, 黎佳茜, 李国文, 等. 中国典型湖泊富营养化现状与区域性差异分析[J]. 水生生物学报, 2018, 42(4): 854-864 Li N, Li J Q, Li G W, et al. Eutrophication status and regional differences of typical lakes in China[J]. Journal of Hydrobiology, 2018, 42(4): 854-864(in Chinese)
范荣桂, 朱东南, 邓岚. 湖泊富营养化成因及其综合治理技术进展[J]. 水资源与水工程学报, 2010, 21(6): 48-52 Fan R G, Zhu D N, Deng L. Causes of eutrophication and progress of integrated management technology in lake[J]. Journal of Water Resources and Water Engineering, 2010, 21(6): 48-52(in Chinese)
Feio M J, Alves T, Boavida M, et al. Functional indicators of stream health: A river-basin approach[J]. Freshwater Biology, 2010, 55(5): 1050-1065 Perkins D M, Reiss J, Yvon-Durocher G, et al. Global change and food webs in running waters[J]. Hydrobiologia, 2010, 657(1): 181-198 陈俊伊, 王康, 郭钰伦, 等. 基于稳定同位素技术的保安湖食物网结构特征研究[J]. 水生生物学报, 2022, 46(5): 699-706 Chen J Y, Wang K, Guo Y L, et al. Food web structure of the Bao’an lake based on stable carbon and nitrogen isotopes analysis[J]. Acta Hydrobiologica Sinica, 2022, 46(5): 699-706(in Chinese)
Polovina Jeffrey J. Model of a coral reef ecosystem: Ⅰ. the Ecopath model and its application to French frigate shoals[J]. Coral Reefs, 1984, 3(1): 1-11 刘玉, 姜涛, 王晓红, 等. 南海北部大陆架海洋生态系统Ecopath模型的应用与分析[J]. 中山大学学报(自然科学版), 2007, 46(1): 123-127 Liu Y, Jiang T, Wang X H, et al. Establishment and analysis of the Ecopath model of the ecosystem in the northern continental shelf of South China Sea[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2007, 46(1): 123-127(in Chinese) 林群, 金显仕, 郭学武, 等. 基于Ecopath模型的长江口及毗邻水域生态系统结构和能量流动研究[J]. 水生态学杂志, 2009, 2(2): 28-36 Lin Q, Jin X S, Guo X W, et al. Study on the structure and energy flow of the Yangtze River Estuary and adjacent waters ecosystem based on Ecopath model[J]. Journal of Hydroecology, 2009, 2(2): 28-36(in Chinese)
李云凯, 禹娜, 陈立侨, 等. 东海南部海区生态系统结构与功能的模型分析[J]. 渔业科学进展, 2010, 31(2): 30-39 Li Y K, Yu N, Chen L Q, et al. Ecological modeling on structure and functioning of southern East China Sea ecosystem[J]. Progress in Fishery Sciences, 2010, 31(2): 30-39(in Chinese)
李云凯, 宋兵, 陈勇, 等. 太湖生态系统发育的Ecopath with Ecosim动态模拟[J]. 中国水产科学, 2009, 16(2): 257-265 Li Y K, Song B, Chen Y, et al. Simulation of ecosystem dynamics of Lake Taihu using Ecopath with Ecosim model[J]. Journal of Fishery Sciences of China, 2009, 16(2): 257-265(in Chinese)
马孟磊. 基于Ecopath模型的典型半封闭海湾生态系统结构和功能研究[D]. 上海: 上海海洋大学, 2018: 19-35 Ma M L. Study on the structure and function of typical semi-enclosed bay ecosystem based on Ecopath model[D]. Shanghai: Shanghai Ocean University, 2018: 19 -35(in Chinese).
张云. 湖北金沙河水库渔业资源状况及生态系统模型研究[D]. 武汉: 华中农业大学, 2015: 56-68 Zhang Y. Study on fishery resources and ecosystem model of Jinshahe Reservoir in Hubei Province[D]. Wuhan: Huazhong Agricultural University, 2015: 56 -68(in Chinese).
黄孝锋. 五里湖生态系统ECOPATH模型的构建与评估[D]. 南京: 南京农业大学, 2011: 39-68 Huang X F. Construction and evaluation of ECOPATH model of Wuli Lake ecosystem[D]. Nanjing: Nanjing Agricultural University, 2011: 39 -68(in Chinese).
Carvalho D A, Williner V, Giri F, et al. Quantitative food webs and invertebrate assemblages of a large river: A spatiotemporal approach in floodplain shallow lakes[J]. Marine and Freshwater Research, 2017, 68(2): 293 Yang Z Y, Liu X Q, Zhou M H, et al. The effect of environmental heterogeneity on species richness depends on community position along the environmental gradient[J]. Scientific Reports, 2015, 5: 15723 陈立勇, 刘娜, 周祥锋, 等. 基于空间自相关的泰州市美国白蛾时空分布格局分析[J]. 江苏林业科技, 2023, 50(4): 30-34 Chen L Y, Liu N, Zhou X F, et al. Spatial-temporal distribution pattern analysis of Hyphantria cunea in Taizhou based on spatial autocorrelation[J]. Journal of Jiangsu Forestry Science & Technology, 2023, 50(4): 30-34(in Chinese)
赵金文, 古剑, 肖正利, 等. 湖北宜昌市2018—2021年松材线虫病疫情扩散时空演变分析[J]. 中国森林病虫, 2023, 42(3): 36-43 Zhao J W, Gu J, Xiao Z L, et al. Spatial-temporal evolution of pine wilt disease in Yichang City, Hubei Province from 2018 to 2021[J]. Forest Pest and Disease, 2023, 42(3): 36-43(in Chinese)
Dai W, Zhao K L, Fu W J, et al. Spatial variation of organic carbon density in topsoils of a typical subtropical forest, Southeastern China[J]. CATENA, 2018, 167: 181-189 Fu W J, Jiang P K, Zhou G M, et al. Using Moran’s I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of Southeastern China[J]. Biogeosciences, 2014, 11(8): 2401-2409 Alyazichi Y M, Jones B G, McLean E. Spatial distribution of sediment particles and trace element pollution within Gunnamatta Bay, Port Hacking, NSW, Australia[J]. Regional Studies in Marine Science, 2015, 2: 124-131 Jin Z, Zhang L X, Lv J S, et al. The application of geostatistical analysis and receptor model for the spatial distribution and sources of potentially toxic elements in soils[J]. Environmental Geochemistry and Health, 2021, 43(1): 407-421 An W K, Wang B, Duan L, et al. Emerging contaminants in the northwest area of the Tai Lake Basin, China: Spatial autocorrelation analysis for source apportionment and wastewater-based epidemiological analysis[J]. Science of the Total Environment, 2023, 865: 161176 Yang M, Gong J G, Zhao Y, et al. Landscape pattern evolution processes of wetlands and their driving factors in the Xiongan New Area of China[J]. International Journal of Environmental Research and Public Health, 2021, 18(9): 4403 Ge Y W, Mao X, She Z J, et al. Spatial heterogeneity of long-term environmental changes in a large agricultural wetland in North China: Implications for wetland restoration[J]. CATENA, 2022, 219: 106582 汪敬忠, 刘卓, 魏浩, 等. 白洋淀表层沉积物元素的空间特征、风险评价及来源分析[J]. 环境科学, 2020, 41(1): 224-231 Wang J Z, Liu Z, Wei H, et al. Spatial characteristics, risk assessment, and source analysis of elements in surface sediments from the Baiyangdian Lake[J]. Environmental Science, 2020, 41(1): 224-231(in Chinese)
程磊. 白洋淀水环境现状分析[J]. 水科学与工程技术, 2016(5): 50-52 Cheng L. Analysis of Baiyangdian water environment situation[J]. Water Sciences and Engineering Technology, 2016 (5): 50-52(in Chinese)
张子晗, 孙枭琼, 李晓楠, 等. 白洋淀枝角类和桡足类初步调查[J]. 河北渔业, 2019(1): 36-38, 57 Zhang Z H, Sun X Q, Li X N, et al. Preliminary investigation on Cladocera and Copepod in Baiyangdian Lake[J]. Hebei Fisheries, 2019(1): 36-38, 57(in Chinese)
杨薇, 田艺苑, 张兆衡, 等. 近60年来白洋淀浮游植物群落演变及生物完整性评价[J]. 环境生态学, 2019(8): 1-9 Yang W, Tian Y Y, Zhang Z H, et al. Evolution of phytoplankton community and biotic integrity in Baiyangdian Lake in recent 60 years[J]. Environmental Ecology, 2019(8): 1-9(in Chinese)
张蒙, 孙枭琼, 方楠, 等. DNA条形码技术在白洋淀流域浮游动物调查中的应用[J]. 河北大学学报(自然科学版), 2019, 39(2): 217-224 Zhang M, Sun X Q, Fang N, et al. Application of DNA barcode on survey of zooplankton in Baiyangdian watershed[J]. Journal of Hebei University (Natural Science Edition), 2019, 39(2): 217-224(in Chinese) 杨雨风, 易雨君, 周扬, 等. 白洋淀底栖动物群落影响因子研究[J]. 水利水电技术, 2019, 50(2): 21-27 Yang Y F, Yi Y J, Zhou Y, et al. Influence factors of benthic macroinvertebrate community in Baiyangdian Lake[J]. Water Resources and Hydropower Engineering, 2019, 50(2): 21-27(in Chinese)
刘学勤. 湖泊底栖动物食物组成与食物网研究[D]. 北京: 中国科学院研究生院, 2006: 158-161 Liu X Q. Study on food composition and food web of lake benthos[D]. Beijing: Graduate School of Chinese Academy of Sciences, 2006: 158 -161(in Chinese)
秦珊. 白洋淀底栖生物群落环境影响因子及污染物食物网传递行为研究[D]. 石家庄: 河北科技大学, 2020: 31-39 Qin S. Study on environmental impact factors and contaminant food web transport behavior of benthic community in Baiyangdian Lake[D]. Shijiazhuang: Hebei University of Science and Technology, 2020: 31 -39(in Chinese)
梁红, 黄林培, 陈光杰, 等. 滇东湖泊水生植物和浮游生物碳、氮稳定同位素与元素组成特征[J]. 湖泊科学, 2018, 30(5): 1400-1412 Liang H, Huang L P, Chen G J, et al. Patterns of carbon and nitrogen stable isotopes and elemental composition of lake primary producers and zooplankton in Eastern Yunnan[J]. Journal of Lake Sciences, 2018, 30(5): 1400-1412(in Chinese)
周凤霞, 陈剑虹. 淡水微型生物与底栖动物图谱[M]. 2版. 北京: 化学工业出版社, 2011: 35 段学花, 王兆印, 徐梦珍. 底栖动物与河流生态评价[M]. 北京: 清华大学出版社, 2010: 40 张欢, 肖协文, 王玉玉, 等. 鄱阳湖流域饶河鱼类稳定同位素比值和营养级的空间变化[J]. 湖泊科学, 2015, 27(6): 1004-1010 Zhang H, Xiao X W, Wang Y Y, et al. Spatial variation instable isotope signatures and trophic position of fish in Raohe River, Lake Poyang Basin[J]. Journal of Lake Sciences, 2015, 27(6): 1004-1010(in Chinese)
王瑜, 刘录三, 舒俭民, 等. 白洋淀浮游植物群落结构与水质评价[J]. 湖泊科学, 2011, 23(4): 575-580 Wang Y, Liu L S, Shu J M, et al. Community structure of phytoplankton and the water quality assessment in Lake Baiyangdian[J]. Journal of Lake Sciences, 2011, 23(4): 575-580(in Chinese)
张璐璐. 基于底栖-浮游耦合食物网的湖泊生态模型研究[D]. 北京: 北京师范大学, 2013: 13-15 Zhang L L. Research on lake ecological model based on benthic-plankton coupled food web[D]. Beijing: Beijing Normal University, 2013: 13 -15(in Chinese)
其木乐, 李宁, 白露超, 等. 湟水河上游底栖动物群落结构及其与环境因子间的关系[J]. 南京农业大学学报, 2020, 43(1): 72-79 Qi M L, Li N, Bai L C, et al. The relationship between benthic fauna community structure and environmental factors in the upper reaches of Huangshui River[J]. Journal of Nanjing Agricultural University, 2019, 43(1): 72-79(in Chinese)
Ma M Y, Liu J L, Wang X M. Biofilms as potential indicators of macrophyte-dominated lake health[J]. Ecotoxicology, 2011, 20(5): 982-992 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000: 37 Christensen V, Walters C J, Pauly D. Ecopath with Ecosim Version 6 User Guide[M]. Vancouver: Fisheries Centre, University of British Columbia, 2008: 40 刘吉平, 吕宪国, 刘庆凤, 等. 别拉洪河流域湿地鸟类丰富度的空间自相关分析[J]. 生态学报, 2010, 30(10): 2647-2655 Liu J P, Lyu X G, Liu Q F, et al. Spatial autocorrelation analysis of wetland bird diversity in Bielahong Basin[J]. Acta Ecologica Sinica, 2010, 30(10): 2647-2655(in Chinese)
马世五, 谢德体, 张孝成, 等. 三峡库区生态敏感区土地生态安全预警测度与时空演变——以重庆市万州区为例[J]. 生态学报, 2017, 37(24): 8227-8240 Ma S W, Xie D T, Zhang X C, et al. Measures of land ecological security early warning and its spatial-temporal evolution in the ecologically sensitive area of the Three Gorges Reservoir area: A case study of Wanzhou District, Chongqing City[J]. Acta Ecologica Sinica, 2017, 37(24): 8227-8240(in Chinese)
Zhao C S, Yang Y, Yang S T, et al. Impact of spatial variations in water quality and hydrological factors on the food-web structure in urban aquatic environments[J]. Water Research, 2019, 153: 121-133 Sun L Q, Liu H, Gao Y P, et al. Food web structure and ecosystem attributes of integrated multi-trophic aquaculture waters in Sanggou Bay[J]. Aquaculture Reports, 2020, 16: 100279 Wang S, Wang T T, Lin H J, et al. Impacts of environmental factors on the food web structure, energy flows, and system attributes along a subtropical urban river in Southern China[J]. Science of the Total Environment, 2021, 794: 148673 田美影, 王学东, 马雪姣, 等. 白洋淀气候变化及对生态系统的影响[J]. 南水北调与水利科技, 2013, 11(2): 76-80 Tian M Y, Wang X D, Ma X J, et al. Climate change in the Baiyang Lake and its impact on ecological system[J]. South-to-North Water Transfers and Water Science & Technology, 2013, 11(2): 76-80(in Chinese)
谷小溪, 张天翼, 董建伟. 查干湖pH变化的主要因素与机制分析[J]. 吉林水利, 2018(4): 1-7 Gu X X, Zhang T Y, Dong J W. The main factors and mechanism analysis of the pH changing in Chagan Lake[J]. Jilin Water Resources, 2018 (4): 1-7(in Chinese)
张雪, 周洵, 李琴, 等. 太湖原水pH值季节性变化规律及突变成因探索[J]. 供水技术, 2015, 9(5): 13-17 Zhang X, Zhou X, Li Q, et al. Seasonal variation regularity and mutation cause of pH in raw water of Taihu Lake[J]. Water Technology, 2015, 9(5): 13-17(in Chinese)
李琦, 张超, 张文强, 等. 白洋淀典型水域COD的组成及各组分贡献[J]. 环境科学, 2023, 44(9): 4915-4926 Li Q, Zhang C, Zhang W Q, et al. Chemical oxygen demand (COD) composition and contribution in typical waters of Baiyangdian Lake[J]. Environmental Science, 2023, 44(9): 4915-4926(in Chinese)
Beisel J N, Usseglio-Polatera P, Thomas S, et al. Stream community structure in relation to spatial variation: The influence of mesohabitat characteristics[J]. Hydrobiologia, 1998, 389(1/3): 73-88 许亚红, 郑子叶, 王建柱, 等. 高岚河大型底栖动物时空分布及影响因子研究[J]. 生物资源, 2019, 41(5): 426-433 Xu Y H, Zheng Z Y, Wang J Z, et al. Study on spatial and temporal distribution and influencing factors of macrobenthic fauna in Gaolan River[J]. Biological Resources, 2019, 41(5): 426-433(in Chinese)
韩洁, 张志南, 于子山. 渤海大型底栖动物丰度和生物量的研究[J]. 青岛海洋大学学报(自然科学版), 2001(6): 889-896 Han J, Zhang Z N, Yu Z S. Study on abundance and biomass of macrobenthos in Bohai Sea[J]. Journal of Ocean University of Qingdao (Natural Science Edition), 2001(6): 889-896(in Chinese) Clarke A, Fraser K P P. Why does metabolism scale with temperature?[J]. Functional Ecology, 2004, 18(2): 243-251 Sánchez-Carrillo S, Angeler D G, Álvarez-Cobelas M, et al. Abiotic drivers of consumer foodweb structure in lakes[J]. Freshwater Science, 2018, 37(2): 404-416 Krashchuk L S, Shimaraeva S V, Silow E A. Spatiotemporal changes in the phytoplankton in Lake Baikal during late summer: Ⅰ. Water temperature and phytoplankton abundance[J]. Inland Water Biology, 2020, 13(1): 31-40 彭朵, 蒋小明, 孙兴, 等. 青海湖入湖河流浮游植物群落时空格局及其影响因子[J]. 环境科学学报, 2024, 44(1): 491-502 Peng D, Jiang X M, Sun X, et al. Spatio-temporal patterns and influencing factors of phytoplankton communities in the main inflow rivers of Qinghai Lake[J]. Acta Scientiae Circumstantiae, 2024, 44(1): 491-502(in Chinese)
李清濯, 华跃洲, 杜成栋, 等. 太湖西山岛河网秋季浮游生物群落结构特征及其影响因子分析[J]. 生态与农村环境学报, 2023, 39(2): 214-226 Li Q Z, Hua Y Z, Du C D, et al. Characteristics and influencing factors of plankton community structure during autumn in Xishan Island waterway network of Taihu Lake[J]. Journal of Ecology and Rural Environment, 2023, 39(2): 214-226(in Chinese)
Scheffer M, Carpenter S, Foley J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413: 591-596 胡忠军, 孙月娟, 刘其根, 等. 浙江千岛湖深水区大型底栖动物时空变化格局[J]. 湖泊科学, 2010, 22(2): 265-271 Hu Z J, Sun Y J, Liu Q G, et al. Temporal and spatial distribution of profundal macrozoobenthic community in Lake Qiandao, Zhejiang, China[J]. Journal of Lake Sciences, 2010, 22(2): 265-271(in Chinese)
Tunney T D, McCann K S, Jarvis L, et al. Blinded by the light? Nearshore energy pathway coupling and relative predator biomass increase with reduced water transparency across lakes[J]. Oecologia, 2018, 186(4): 1031-1041 张超文, 张堂林, 朱挺兵, 等. 洪泽湖大型底栖动物群落结构及其与环境因子的关系[J]. 水生态学杂志, 2012, 33(3): 27-33 Zhang C W, Zhang T L, Zhu T B, et al. Community structure of macrozoobenthos and its relationship with environmental factors in Lake Hongze[J]. Journal of Hydroecology, 2012, 33(3): 27-33(in Chinese)
Coggan R, Barrio Froján C R S, Diesing M, et al. Spatial patterns in gravel habitats and communities in the central and eastern English Channel[J]. Estuarine, Coastal and Shelf Science, 2012, 111: 118-128 McKinnon J G, Gribben P E, Davis A R, et al. Differences in soft-sediment macrobenthic assemblages invaded by Caulerpa taxifolia compared to uninvaded habitats[J]. Marine Ecology Progress Series, 2009, 380: 59-71 刘乐丹, 王先云, 陈丽平, 等. 淀山湖底栖动物群落结构及其与沉积物碳氮磷的关系[J]. 长江流域资源与环境, 2018, 27(6): 1269-1278 Liu L D, Wang X Y, Chen L P, et al. Community structure of macrozoobenthos with relationships to carbon, nitrogen and phosphorus in the sediment of Dianshan Lake (Shanghai, China)[J]. Resources and Environment in the Yangtze Basin, 2018, 27(6): 1269-1278(in Chinese)
Kong X Z, He W, Liu W X, et al. Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s[J]. Ecological Modelling, 2016, 319: 31-41 Mor J R, Ruhí A, Tornés E, et al. Dam regulation and riverine food-web structure in a Mediterranean river[J]. Science of the Total Environment, 2018, 625: 301-310 Oleszczuk B, Silberberger M J, Grzelak K, et al. Macrofauna and meiofauna food-web structure from Arctic fjords to deep Arctic Ocean during spring: A stable isotope approach[J]. Ecological Indicators, 2023, 154: 110487 Sánchez-Carrillo S, Angeler D G, Álvarez-Cobelas M, et al. Abiotic drivers of consumer foodweb structure in lakes[J]. Freshwater Science, 2018, 37(2): 404-416 Hu Z, Lin Y. Analysis of evolution process and driving factors for aquatic vegetations of Poyang Lake in 30 years[J]. Resources and Environment in the Yangtze Basin, 2019, 28(8): 1947-1955 于佳. 洞庭湖和千岛湖食物网的时空特征研究[D]. 武汉: 华中农业大学, 2019: 51-59 Yu J. Temporal and spatial characteristics of food webs in Dongting Lake and Qiandao Lake[D]. Wuhan: Huazhong Agricultural University, 2019: 51 -59(in Chinese).
Beltman B, Barrett P, Greaves M P, et al. Aquatic macrophytes: A useful tool against eutrophication[C]. Uppsala: International Symposium on Aquatic Weeds, 1990: 35-38 Wang B, Zhou L P, Li W. Preliminary studies on the purifying function and its physiological reaction of Potamogeton crispus under different water qualities[J]. Journal of Wuhan Botanical Research, 2002, 20: 150-152 张璐. 刚毛藻对沉水植物、蓝藻生长及沉积物营养迁移影响研究[D]. 武汉: 武汉理工大学, 2019: 12-18 Zhang L. Effects of Cladosporium on growth of submerged plants and cyanobacteria and nutrient migration of sediments[D]. Wuhan: Wuhan University of Technology, 2019: 12 -18(in Chinese).
魏宏农. 附着藻类与水体营养盐及沉水植物衰亡的关系[D]. 南京: 南京师范大学, 2013: 1-5 Wei H N. Relationship between attached algae and the decline of nutrients and submerged plants in water[D]. Nanjing: Nanjing Normal University, 2013: 1 -5(in Chinese).
刘国锋, 徐增洪, 朱光艳, 等. 大棚繁育克氏原螯虾种苗对养殖水体营养盐的影响[J]. 水生生物学报, 2023, 47(12): 1909-1917 Liu G F, Xu Z H, Zhu G Y, et al. Breeding Procambarus clarkii seedlings in greenhouse on nutrients in aquaculture water[J]. Acta Hydrobiologica Sinica, 2023, 47(12): 1909-1917(in Chinese)
-

计量
- 文章访问数: 690
- HTML全文浏览数: 690
- PDF下载数: 147
- 施引文献: 0