基于PCA的非甾体抗炎药与消毒副产物复杂混合物对2种水生生物的毒性作用比较
Comparison of Toxicity Interactions within Complex Mixtures of Nonsteroidal Anti-inflammatory Drugs and Disinfection Byproducts between Two Aquatic Organisms by PCA
-
摘要: 非甾体抗炎药(nonsteroidal anti-inflammatory drugs,NSAIDs)与消毒副产物(disinfection by-products,DBPs)在水环境中广泛存在,很可能对暴露其中的生物产生联合毒性,但不同的生物响应不同。因此,以双氯芬酸钠、布洛芬钠、萘普生钠、氯乙酸、二氯乙酸和三氯乙酸为目标污染物,采用均匀设计射线法设计它们的复杂六元混合物体系(2个体系,每个体系含7条射线U1~U7),运用时间毒性微板分析法系统测定混合物体系分别对2种指示生物青海弧菌(Q67)和蛋白核小球藻(C.pyrenoidosa)在不同暴露时间的毒性数据,采用浓度加和(CA)与绝对残差(dCA)2种模型对混合物的毒性相互作用进行定性分析和定量表征,并采用主成分分析法(PCA)分析六元混合物体系对2种水生生物的毒性相互作用差异。结果表明:六元混合物对Q67和C.pyrenoidosa均具有时间和浓度比依赖毒性,但变化规律不同,对Q67的毒性除U2和U4随时间先减弱后增强外,其余射线均减弱,而对C.pyrenoidosa除U1、U4和U5毒性随时间减弱外,其余射线均增强。以半数效应浓度的负对数(pEC50)为毒性指标,各条射线对Q67和绿藻的毒性差异不明显,对Q67的毒性强弱顺序在12 h为U5>U4>U6>U7>U2>U3>U1,对C.pyrenoidosa毒性强弱顺序在96 h为U5>U7>U4>U6>U2>U3>U1。混合物体系对Q67和C.pyrenoidosa毒性相互作用均存在协同和拮抗作用,也具有浓度比和时间依赖性,但变化规律不同,对Q67协同作用较对绿藻的明显,且出现在8 h的射线U5,而对C.pyrenoidosa的拮抗作用较强,出现在96 h的U1射线,但对2种生物的协同和拮抗作用差异不显著。六元混合物体系均会不同程度的损坏Q67和C.pyrenoidosa的细胞结构,造成细胞内过氧化物过量累积,细胞膜脂质过氧化,破坏细胞膜和细胞器膜,胞内电导液外泄,但Q67细胞的受损程度较C.pyrenoidosa的明显。Abstract: Nonsteroidal anti-inflammatory drugs (NSAIDs) and disinfection by-products (DBPs) are widely available in the environment and probably cause combined toxicity, but the responses of different organisms vary. Therefore, six pollutants including diclofenac sodium, ibuprofen sodium, naproxen sodium, chloroacetic acid, dichloroacetic acid and trichloroacetic acid were selected as target pollutants and used to design two complex hexatomic mixture systems each containing seven rays (U1~U7), using the uniform design ray method. The toxicity data of hexatomic mixture systems towards Q67 and C. pyrenoidosa towards two biological indicators Vibrio qingqingensis sp. -Q67 (Q67) and Chlorella pyrenoidosa (C. pyrenoidosa) at different exposure time were investigated, respectively by the time-toxicity microplate analysis. Concentration addition (CA) and deviation from CA model (dCA) models were used to qualitatively and quantitatively characterize toxicity interactions within mixtures, and the principal component analysis (PCA) was used to analyze the differences in toxicity interactions between the two aquatic organisms. The results showed that hexatomic mixture systems exhibited time- and concentration-dependent toxicity to both Q67 and C. pyrenoidosa, but the changing trend differed. The toxicity to Q67 was weakened except U2 and U4 which first weakened and then increased with time, and the toxicity to C. pyrenoidosa was strengthened except U1, U4 and U5 which weakened with time. Taking the negative logarithm of half effective concentration (pEC50) as the toxicity index, the toxicity of each ray to Q67 and green algae differed insignificantly. And the toxicity order for Q67 at 12 h was U5>U4>U6>U7>U2>U3>U1, and for C. pyrenoidosa at 96 h was U5>U7>U4>U6>U2>U3>U1. The mixture systems also had time-/concentration ratio-dependent synergistic and antagonistic effects on both Q67 and C. pyrenoidosa, but the changing trends differed. The synergistic effect on Q67 was stronger than on C. pyrenoidosa, and the strongest synergism appeared at 8 h of ray U5. The antagonism was more obvious for C. pyrenoidosa than that of Q67, and the strongest antagonism was observed at 96 h of U1 ray. However, the difference of synergism and antagonism between the two test organisms was not remarkable. Hexatomic mixture systems can damage the normal cell structure of Q67 and C. pyrenoidosa to varying degrees, resulting in excessive accumulation of intracellular peroxide, lipid peroxidation of cell membrane, destruction of cell membrane and organelles, and leakage of intracellular conductance fluid, but the damage degree of Q67 cells is more obvious than that of C. pyrenoidosa.
-
-
ŚWIACKA K, MICHNOWSKA A, MACULEWICZ J, et al. Toxic effects of NSAIDs in non-target species:a review from the perspective of the aquatic environment[J]. Environmental pollution, 2021, 273:115891. JUNAID M, WANG Y, HAMID N, et al. Prioritizing selected PPCPs on the basis of environmental and toxicogenetic concerns:a toxicity estimation to confirmation approach[J]. Journal of hazardous materials, 2019, 380:120828. WANG J, MENG X Y, CHEN X Y, et al. Cinchophen induces RPA1 related DNA damage and apoptosis to impair ENS development of zebrafish[J]. Ecotoxicology and environmental safety, 2024, 272:116032. DU J, MEI C F, YING G G, et al. Toxicity thresholds for diclofenac, acetaminophen and ibuprofen in the water flea Daphnia magna[J]. Bulletin of environmental contamination and toxicology, 2016, 97(1):84-90. 楚文海,肖融,丁顺克,等.饮用水中的消毒副产物及其控制策略[J].环境科学, 2021, 42(11):5059-5074. CHU W H, XIAO R, DING S K, et al. Disinfection by-products in drinking water and their control strategies:a review[J]. Environmental science, 2021, 42(11):5059-5074.
GAO J N, PROULX F, RODRIGUEZ M J. Synergistic effects of quenching agents and pH on the stability of regulated and unregulated disinfection by-products for drinking water quality monitoring[J]. Environmental monitoring and assessment, 2020, 192(2):143. 易欣源,曲鑫璐,龙昕,等.饮用水中典型消毒副产物的化学特性、生成转化及毒性研究进展[J].生态毒理学报, 2023, 18(2):97-110. YI X Y, QU X L, LONG X, et al. Research progress on chemical properties, transformation and toxicity of typical disinfection byproducts in drinking water[J]. Asian journal of ecotoxicology, 2023, 18(2):97-110.
胡冠九,徐明华,高占啟.水中消毒副产物的监测方法研究进展[J].环境监测管理与技术, 2022, 34(1):10-15. HU G J, XU M H, GAO Z Q. Research progress on monitoring methods for disinfection by-products in water[J]. The administration and technique of environmental monitoring, 2022, 34(1):10-15.
WANG Y S, ZHANG L D, ZHOU X, et al. Bromoacetic acid impairs mouse oocyte in vitro maturation through affecting cytoskeleton architecture and epigenetic modification[J]. Chemico-biological interactions, 2022, 368:110192. RAGAZZO P, FERETTI D, MONARCA S, et al. Evaluation of cytotoxicity, genotoxicity, and apoptosis of wastewater before and after disinfection with performic acid[J]. Water research, 2017, 116:44-52. PERVEEN S, HASHMI I, KHAN R. Evaluation of genotoxicity and hematological effects in common carp (Cyprinus carpio) induced by disinfection by-products[J]. Journal of water and health, 2019, 17(5):762-776. MIAN H R, HU G J, HEWAGE K, et al. Prioritization of unregulated disinfection by-products in drinking water distribution systems for human health risk mitigation:a critical review[J]. Water research, 2018, 147:112-131. ZHANG D, BOND T, PAN Y, et al. Identification, occurrence, and cytotoxicity of haloanilines:a new class of aromatic nitrogenous disinfection byproducts in chlorinated and chlorinated drinking water[J]. Environmental science&technology, 2022, 56(7):4132-4141. PANDIAN A M K, RAJAMEHALA M, SINGH M V P, et al. Potential risks and approaches to reduce the toxicity of disinfection by-product:a review[J]. Science of the total environment, 2022, 822:153323. 叶璟,王照洋,田富箱,等.新型污染物氯代消毒副产物的生态环境及人体健康毒性效应研究进展[J].环境化学, 2024, 43(10):3234-3246. YE J, WANG Z Y, TIAN F X, et al. Research progress of the toxic effects of emerging contaminants chlorinated disinfection byproducts on ecological environment and human health[J]. Environmental chemistry, 2024, 43(10):3234-3246.
QIU J F, HUANG Y, WU Y, et al. Detection, transformation, and toxicity of indole-derivative nonsteroidal anti-inflammatory drugs during chlorine disinfection[J]. Chemosphere, 2020, 260:127579. 陈如荔.敌百虫及其代谢产物与N-DBPs对发光菌Q67的联合毒性及机理[D].合肥:安徽建筑大学, 2023:67-69. CHEN R L. Combined toxicity and mechanism of trichlorfon and its metabolites with N-DBPs to photoluminescent bacterium Q67[D]. Hefei:Anhui Jianzhu University, 2023 :67-69.
丁婷婷,董欣琪,张瑾,等. 3种氨基糖苷类抗生素对水生生物的时间依赖联合毒性作用比较[J].生态毒理学报, 2018, 13(1):126-137. DING T T, DONG X Q, ZHANG J, et al. Comparison of time-dependent joint toxicity interaction of three aminoglycosides antibiotics between two aquatic organisms[J]. Asian journal of ecotoxicology, 2018, 13(1):126-137.
ZHANG J, DING T T, DONG X Q, et al. Time-dependent and Pb-dependent antagonism and synergism towards Vibrio qinghaiensis sp.-Q67 within heavy metal mixtures[J]. RSC advances, 2018, 8(46):26089-26098. 班龙科,丁婷婷,陈敏,等.五种重金属对蛋白核小球藻的动态毒性研究[J].安徽建筑大学学报, 2017, 25(4):24-28. BAN L K, DING T T, CHEN M, et al. Study on the dynamictoxicity of five heavy metals on Chlorella pyrenodosa[J]. Journal of Anhui Jianzhu University, 2017, 25(4):24-28.
张瑾,董欣琪,陈敏,等.五元氨基甲酸酯类农药混合物体系对青海弧菌的毒性特点[J].生态毒理学报, 2017, 12(4):138-145. ZHANG J, DONG X Q, CHEN M, et al. Toxicity characteristics of five-carbamate pesticide mixture system towards Vibrio qinghaiensis sp. Q67[J]. Asian journal of ecotoxicology, 2017, 12(4):138-145.
卞志强,张瑾,王滔,等.氨基甲酸酯类农药对蛋白核小球藻联合毒性作用特点及机制[J].生态毒理学报, 2019, 14(4):150-162. BIAN Z Q, ZHANG J, WANG T, et al. Time-dependent joint toxicity characteristics and mechanisms of five carbamate pesticides towardsChlorella pyrenoidosa[J]. Asian journal of ecotoxicology, 2019, 14(4):150-162.
马添翼,张瑾,周娜娜,等.两种除草剂与两种杀虫剂对蛋白核小球藻的联合毒性作用评估[J].环境化学, 2022, 41(7):2221-2233. MA T Y, ZHANG J, ZHOU N N, et al. Evaluation of joint toxicity of two herbicides and two insecticides onChlorella pyrenoidosa[J]. Environmental chemistry, 2022, 41(7):2221-2233.
AL-HAMMADI M, GÜNGÖRMÜŞLER M. New insights into Chlorella vulgaris applications[J]. Biotechnology and bioengineering, 2024, 121(5):1486-1502. DAYANA PRIYADHARSHINI S, BAKTHAVATSALAM A K. A comparative study on growth and degradation behavior of C. pyrenoidosa on synthetic phenol and phenolic wastewater of a coal gasification plant[J]. Journal of environmental chemical engineering, 2019, 7(3):103079. 代碧雅,张瑾,马添翼,等.三种有机杀虫剂对蛋白核小球藻的联合毒性作用及机理[J].环境化学, 2025, 44(2):677-689. DAI B Y, ZHANG J, MA T Y, et al. Combined toxicity and mechanism of three organic insecticides on Chlorella pyrenoidosa[J]. Environmental chemistry, 2025, 44(2):677-689.
桂一心,张瑾,张颖,等. 3种N-DBPs对青海弧菌Q67的联合毒性作用及贡献度[J].中国环境科学, 2024, 44(5):2742-2753. GUI Y X, ZHANG J, ZHANG Y, et al. Combined toxicity interactions and contribution of three N-DBPs to Vibrio qinghaiensis sp.-Q67[J]. China environmental science, 2024, 44(5):2742-2753.
LIU S S, WANG C L, ZHANG J, et al. Combined toxicity of pesticide mixtures on green algae and photobacteria[J]. Ecotoxicology and environmental safety, 2013, 95:98-103. ZHANG J, LIU S S, DONG X Q, et al. Predictability of the time-dependent toxicities of aminoglycoside antibiotic mixtures to Vibrio qinghaiensis sp.-Q67[J]. RSC advances, 2015, 5(129):107076-107082. 宋崇崇.典型抗生素与消毒剂对蛋白核小球藻的联合毒性及机理研究[D].合肥:安徽建筑大学, 2022:7-8. SONG C C.Study on the combined toxicity and mechanism of typical antibiotics and disinfectants to Chlorella pyrenoidosa[D]. Hefei:Anhui Jianzhu University, 2022:7 -8.
黄子晏,陶梦婷,张瑾,等.重金属与农药污染物对青海弧菌Q67拮抗作用的定量评估[J].环境化学, 2020, 39(9):2441-2449. HUANG Z Y, TAO M T, ZHANG J, et al. Quantitative evaluation on the antagonism between heavy mental and pesticide pollutants to Vibrio qinghaiensis sp.-Q67[J]. Environmental chemistry, 2020, 39(9):2441-2449.
张静,张瑾,宋崇崇,等. 3种四环素类抗生素对绿藻联合毒性作用评估[J].环境科学与技术, 2023, 46(4):1-10. ZHANG J, ZHANG J, SONG C C, et al. Assessment of the combined toxic effects of three tetracycline antibiotics on green algae[J]. Environmental science&technology, 2023, 46(4):1-10.
HE B S, WANG J, LIU J, et al. Eco-pharmacovigilance of non-steroidal anti-inflammatory drugs:necessity and opportunities[J]. Chemosphere, 2017, 181:178-189. 丁欢欢.我国重点城市饮用水中5组卤代消毒副产物的分布特征与毒性排序[D].北京:中国科学院大学, 2013:24-32. DING H H.Distribution characteristics and toxicity ranking of 5 groups of halogenated disinfection byproducts in drinking water of key cities in China[D]. Beijing:University of Chinese Academy of Sciences, 2013 :24-32.
LIU S S, XIAO Q F, ZHANG J, et al. Uniform design ray in the assessment of combined toxicities of multi-component mixtures[J]. Science bulletin, 2016, 61(1):52-58. 刘树深,张瑾,张亚辉,等. APTox:化学混合物毒性评估与预测[J].化学学报, 2012, 70(14):1511-1517. Liu S S, Zhang J, Zhang Y H, et al. APTox:assessment and prediction on toxicity of chemical mixtures[J]. Acta chimica sinica, 2012, 70(14):1511-1517.
刘树深.化学混合物毒性评估与预测方法[M].北京:科学出版社, 2017:57-68. 姜慧.部分抗生素对青海弧菌Q67的联合毒性作用特点及机制研究[D].合肥:安徽建筑大学, 2020:15-16. JIANG H. Study on the characteristics and mechanism of combined toxicity of some antibiotics against Vibrio qinghaiensis sp.-Q67[D]. Hefei:Anhui Jianzhu University, 2020 :15-16.
王孝平,邢树礼.考马斯亮蓝法测定蛋白含量的研究[J].天津化工, 2009, 23(3):40-42. WANG X P, XING S L. Determination of protein quantitation using the method of coomassie brilliant blue[J]. Tianjin chemical industry, 2009, 23(3):40-42.
包怡红,张俊顺,符群,等.细叶小檗果小檗碱抑菌性能及机理[J].食品科学, 2020, 41(17):29-34. BAO Y H, ZHANG J S, FU Q, et al. Antibacterial activity and mechanism of berberine from the fruit of Berberis poiretii[J]. Food science, 2020, 41(17):29-34.
王巍,牟德华,李丹丹.山楂果胶寡糖的抑菌性能及机理[J].食品科学, 2018, 39(3):110-116. WANG W, MOU D H, LI D D. Antibacterial activity and mechanism of hawthorn pectin oligosaccharides[J]. Food science, 2018, 39(3):110-116.
ZHANG J, TAO M T, SONG C C, et al. Time-dependent synergism of five-component mixture systems of aminoglycoside antibiotics to Vibrio qinghaiensis sp.-Q67 induced by a key component[J]. RSC advances, 2020, 10(21):12365-12372. 王继庆,任毅,时晓磊,等.小麦籽粒超氧化物歧化酶(SOD)活性全基因组关联分析[J].中国农业科学, 2021, 54(11):2249-2265. WANG J Q, REN Y, SHI X L, et al. Genome-wide association analysis of superoxide dismutase (SOD) activity in wheat grain[J]. Scientia agricultura sinica, 2021, 54(11):2249-2265.
胡钰,张齐杰,傅纤雯,等.栀子花乙酸乙酯萃取物对副溶血性弧菌抑菌活性及机理研究[J].食品与发酵工业, 2024, 50(21):51-59. HU Y, ZHANG Q J, FUX W, et al. Bacteriostatic activity and mechanism of ethyl acetate extract from Gardenia jasminoides Ellis flower against Vibrio parahaemolyticus[J]. Food and fermentation industries, 2024, 50(21):51-59.
穆卫谊,韩宁,曲植,等.基于非线性耦合的土壤电导率传感器标定方法[J].农业机械学报, 2023, 54(10):356-363. MU W Y, HAN N, QU Z, et al. Coupling calibration method for multivariate nonlinear soil electrical conductivity sensor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(10):356-363.
MITSOU I, MULTHAUPT H A B, COUCHMAN J R. Proteoglycans, ion channels and cell-matrix adhesion[J]. Biochemical journal, 2017, 474(12):1965-1979. ZAFRA F, PINIELLA D. Proximity labeling methods for proteomic analysis of membrane proteins[J]. Journal of proteomics, 2022, 264:104620. LEYVA-LEYVA M, SANDOVAL A, FELIX R, et al. Biochemical and functional interplay between ion channels and the components of the dystrophin-associated glycoprotein complex[J]. The Journal of membrane biology, 2018, 251(4):535-550. -

计量
- 文章访问数: 263
- HTML全文浏览数: 263
- PDF下载数: 69
- 施引文献: 0