PM2.5/O3暴露损伤细胞及线粒体的分子调控机制差异
Differences in Molecular Regulatory Mechanisms of Cells and Mitochondria Damaged by PM2.5/O3 Exposure
-
摘要: 流行性病学研究表明,PM2.5和O3均与一些不良健康结局相关,如心肺、神经系统等相关疾病。在健康结局层面,PM2.5和O3的暴露效果具有一定的相似性。然而,PM2.5/O3的理化性质具有显著差异:PM2.5是分散在大气中呈固态或液态的颗粒物;而O3是具有强氧化性质的气体。生物体对不同性质的干扰有不同的防御及反应机制,故推测二者导致疾病发生的过程及分子调控机制可能存在差异。体外实验综述表明,氧化应激是PM2.5及O3造成损伤的重要机制。在细胞层面,PM2.5主要通过诱导细胞内自噬相关的炎症反应发挥作用;而O3通过攻击细胞膜上不饱和结构导致膜损伤。线粒体产能过程伴随着活性氧(ROS)的产生。当外界环境变化,细胞内的ROS平衡被打破,进而导致线粒体损伤。线粒体在细胞发育、代谢、信号传导及细胞命运调控等方面起着关键作用。近年来在线粒体层面的研究表明,PM2.5暴露可引起细胞内离子变化,诱导与线粒体相关的生理变化;而O3作为氧化分子直接损伤线粒体。本文综述了PM2.5/O3暴露导致的线粒体结构、功能、线粒体DNA (mtDNA)及相关信号通路的损伤机制,进一步探讨了二者在健康结局和疾病发生中的异同。通过阐明PM2.5/O3对线粒体及细胞损伤的机制,本文为大气污染相关疾病的预防和诊断提供了新的思路和研究方向。Abstract: Epidemiological studies have shown that PM2.5 and O3 are associated with some adverse health outcomes, such as cardiopulmonary, neurological, and other system-related diseases. These adverse health outcomes induced by PM2.5 and O3 are similar. PM2.5 and O3 have distinct physical and chemical properties, with PM2.5 being a solid-liquid mixture and O3 being a strongly oxidizing gaseous pollutant. Biological organisms have distinct defense and response mechanisms for different environmental disturbances. Therefore, it is hypothesized that the processes and molecular regulatory mechanisms of diseases induced by PM2.5 and O3 exposure could be different. In vitro studies suggested that oxidative stress is an essential mechanism of damage caused by PM2.5/O3. At the cellular level, PM2.5 primarily exerts its effects by inducing autophagy-related inflammatory responses, whereas O3 leads to membrane damage by attacking unsaturated structures in the cell membrane. The process of mitochondrial energy production is accompanied by the generation of reactive oxygen species (ROS). The imbalance of ROS oxidative and antioxidant reactions induced by PM2.5 and O3 exposure could lead to mitochondrial damage. Mitochondria play an essential role in cell development, metabolism, signal transduction, and regulation of cell fate. Recent studies indicated that PM2.5 exposure induced mitochondrial-related physiological alterations by modulating intracellular ion dynamics. In contrast, O3, as a potent oxidizing agent, directly inflicted damage on cellular structures, including mitochondria. This review provides a comprehensive summary of the damage to mitochondrial structure, function, mitochondrial DNA (mtDNA), and related signaling pathways caused by PM2.5 and O3 exposure. Furthermore, it explores the similarities and differences in health outcomes and disease processes between PM2.5 and O3. By elucidating the damage mechanism of PM2.5 and O3 to mitochondria and cells, this article offers new insights and research directions for the prevention and diagnosis of diseases related to atmospheric pollution.
-
-
BRAUER M, ROTH G A, ARAVKIN A Y, et al. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021:a systematic analysis for the Global Burden of Disease Study 2021[J]. The lancet, 2024, 403(10440):2162-2203. KONG X M, BENNETT W C, JANIA C M, et al. Identification of an ATP/P2X7/mast cell pathway mediating ozone-induced bronchial hyperresponsiveness[J]. Journal of clinical investigation insight, 2021, 6(21):e140207. LEPEULE J, LADEN F, DOCKERY D, et al. Chronic exposure to fine particles and mortality:an extended follow-up of the Harvard Six Cities study from 1974 to 2009[J]. Environmental health perspectives, 2012, 120(7):965-970. ZHENG S, POZZER A, CAO C X, et al. Long-term (2001-2012) concentrations of fine particulate matter (PM2.5) and the impact on human health in Beijing, China[J]. Atmospheric chemistry and physics, 2015, 15(10):5715-5725. YANG L Y, LI C, TANG X X. The impact of PM2.5 on the host defense of respiratory system[J]. Frontiers in cell and developmental biology, 2020, 8:91. LEDERER A M, FREDRIKSEN P M, NKEH-CHUNGAG B N, et al. Cardiovascular effects of air pollution:current evidence from animal and human studies[J]. American journal of physiology heart and circulatory physiology, 2021, 320(4):H1417-H1439. NGUYEN U T N, HSIEH H Y, CHIN T Y, et al. Evaluation of PM2.5 influence on human lung cancer cells using a microfluidic platform[J]. International journal of medical sciences, 2024, 21(6):1117-1128. ARDEN POPE C 3rd, BHATNAGAR A, MCCRACKEN J P, et al. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation[J]. Circulation research, 2016, 119(11):1204-1214. ZHANG J J, WEI Y J, FANG Z F. Ozone pollution:a major health hazard worldwide[J]. Frontiers in immunology, 2019, 10:2518. 贺晓楠,张城,曹璇,等. PM2.5与心血管疾病住院患者血清TNF-α表达的相关性研究[J].中国实验诊断学, 2018, 22(3):389-392. HE X N, ZHANG C, CAO X, et al. The research on the correlation between PM2.5 and TNF-α of inpatients with cardiovascular disease[J]. Chinese journal of laboratory diagnosis, 2018, 22(3):389-392.
DENIERE E, VAN HULLE S, VAN LANGENHOVE H, et al. Advanced oxidation of pharmaceuticals by the ozone-activated peroxymonosulfate process:the role of different oxidative species[J]. Journal of hazardous materials, 2018, 360:204-213. ZHOU Y Q, DUAN W L, CHEN Y N, et al. Exposure risk of global surface O3 during the boreal spring season[J]. Exposure and health, 2022, 14(2):431-446. ARJOMANDI M, WONG H, TENNEY R, et al. Effect of ozone on allergic airway inflammation[J]. Journal of allergy and clinical immunology:global, 2022, 1(4):273-281. JIANG Y X, HUANG J, LI G X, et al. Ozone pollution and hospital admissions for cardiovascular events[J]. European heart journal, 2023, 44(18):1622-1632. LIU C, CHEN R J, SERA F, et al. Interactive effects of ambient fine particulate matter and ozone on daily mortality in 372 cities:two stage time series analysis[J]. BMJ, 2023, 383:e075203. NERY-FLORES S D, RAMÍREZ-HERRERA M A, MENDOZA-MAGAÑA M L, et al. Dietary curcumin prevented astrocytosis, microgliosis, and apoptosis caused by acute and chronic exposure to ozone[J]. Molecules, 2019, 24(15):2839. YANG L W, WANG Y H, LIN Z Y, et al. Mitochondrial OGG1 protects against PM2.5-induced oxidative DNA damage in BEAS-2B cells[J]. Experimental and molecular pathology, 2015, 99(2):365-373. AVOGBE P H, AYI-FANOU L, AUTRUP H, et al. Ultrafine particulate matter and high-level benzene urban air pollution in relation to oxidative DNA damage[J]. Carcinogenesis, 2005, 26(3):613-620. 黄强,董发勤,王利民,等. PM2.5的细胞毒性及机制研究进展[J].毒理学杂志, 2014, 28(1):68-72. KOSMIDER B, LOADER J E, MURPHY R C, et al. Apoptosis induced by ozone and oxysterols in human alveolar epithelial cells[J]. Free radical biology and medicine, 2010, 48(11):1513-1524. WU X X, ZHANG H Y, QI W, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis[J]. Cell death&disease, 2018, 9(2):171. HERRERA A S, DEL C A E M, ASHRAF G M, et al. Beyond mitochondria, what would be the energy source of the cell?[J]. Central nervous system agents in medicinal chemistry, 2015, 15(1):32-41. DARE A J, PHILLIPS A R J, HICKEY A J R, et al. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome[J]. Free radical biology&medicine, 2009, 47(11):1517-1525. XIAN H X, WATARI K, SANCHEZ-LOPEZ E, et al. Oxidized DNA fragments exit mitochondria via mPTP-and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling[J]. Immunity, 2022, 55(8):1370-1385. AKEN O V J A R. Mitochondria and cell death[J]. Nature, 2017, 36(9):4980-4993. 毕婷婷,陈世杰,赵晓红,等. PM2.5对线粒体损伤作用机制的研究进展[J].生命科学, 2016, 28(3):409-414. BI T T, CHEN S J, ZHAO X H, et al. Advances on mechanism of mitochondrial damage induced by PM2.5[J]. Chinese bulletin of life sciences, 2016, 28(3):409-414.
GAO R, KU T T, JI X T, et al. Abnormal energy metabolism and tau phosphorylation in the brains of middle-aged mice in response to atmospheric PM2.5 exposure[J]. Journal of environmental sciences, 2017, 62:145-153. SILBAJORIS R, OSORNIO-VARGAS A R, SIMMONS S O, et al. Ambient particulate matter induces interleukin-8 expression through an alternative NF-κ B (nuclear factor-kappa B) mechanism in human airway epithelial cells[J]. Environmental health perspectives, 2011, 119(10):1379-1383. LI R J, KOU X J, GENG H, et al. Mitochondrial damage:an important mechanism of ambient PM2.5 exposure-induced acute heart injury in rats[J]. Journal of hazardous materials, 2015, 287:392-401. AMORES-INIESTA J, BARBER-CREMADES M, MAR-TíNEZ C M, et al. Extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection[J]. Cell reports, 2017, 21(12):3414-3426. ZHANG N, LI P, LIN H, et al. IL-10 ameliorates PM2.5-induced lung injury by activating the AMPK/SIRT1/PGC-1α pathway[J]. Environmental toxicology and pharmacology, 2021, 86:103659. LALIER L, MIGNARD V, JOALLAND M P, et al. TOM20-mediated transfer of Bcl2 from ER to MAM and mitochondria upon induction of apoptosis[J]. Cell death&disease, 2021, 12(2):182. LI J Y, SUN X, WANG X, et al. PGAM5 exacerbates acute renal injury by initiating mitochondria-dependent apoptosis by facilitating mitochondrial cytochrome c release[J]. Acta pharmacologica sinica, 2024, 45(1):125-136. TORRES-RAMOS Y D. Urban PM2.5 induces ROS generation and RBC damage in COPD patients[J]. Frontiers in bioscience, 2011, E3(1):808. LI R S, MITTELSTEIN D, KAM W, et al. Atmospheric ultrafine particles promote vascular calcification via the NF-κ B signaling pathway[J]. American journal of physiology cell physiology, 2013, 304(4):C362-C369. SHAN H, LI X H, OUYANG C, et al. Salidroside prevents PM2.5-induced BEAS-2B cell apoptosis via SIRT1-dependent regulation of ROS and mitochondrial function[J]. Ecotoxicology and environmental safety, 2022, 231:113170. WIEGMAN C H, MICHAELOUDES C, HAJI G, et al. Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease[J]. Journal of allergy and clinical immunology, 2015, 136(3):769-780. JI X T, LI C X, ZHU X Z, et al. Methylcobalamin alleviates neuronal apoptosis and cognitive decline induced by PM2.5 exposure in mice[J]. Journal of Alzheimer's disease, 2022, 86(4):1783-1796. LI X L, RAN Q, HE X, et al. HO-1 upregulation promotes mitophagy-dependent ferroptosis in PM2.5-exposed hippocampal neurons[J]. Ecotoxicology and environmental safety, 2024, 277:116314. GUO C C, LYU Y, XIA S S, et al. Organic extracts in PM2.5 are the major triggers to induce ferroptosis in SH-SY5Y cells[J]. Ecotoxicology and environmental safety, 2023, 249:114350. BATTAGLIA A M, CHIRILLO R, AVERSA I, et al. Ferroptosis and cancer:mitochondria meet the"iron maiden"cell death[J]. Cells, 2020, 9(6):1505. TIAN L, CHU N, YANG H, et al. Acute ozone exposure can cause cardiotoxicity:mitochondria play an important role in mediating myocardial apoptosis[J]. Chemosphere, 2021, 268:128838. XU M M, WANG L, WANG M Y, et al. Mitochondrial ROS and NLRP3 inflammasome in acute ozone-induced murine model of airway inflammation and bronchial hyperresponsiveness[J]. Free radical research, 2019, 53(7):780-790. VALDEZ M, VALDEZ J M, FREEBORN D, et al. The effects of ozone exposure and sedentary lifestyle on neuronal microglia and mitochondrial bioenergetics of female Long-Evans rats[J]. Toxicology and applied pharmacology, 2020, 408:115254. TU H L, COSTA M. XIAP's profile in human cancer[J]. Biomolecules, 2020, 10(11):1493. MILLER D B, KAROLY E D, JONES J C, et al. Inhaled ozone (O3)-induces changes in serum metabolomic and liver transcriptomic profiles in rats[J]. Toxicology and applied pharmacology, 2015, 286(2):65-79. NING R H, LI Y, DU Z, et al. The mitochondria-targeted antioxidant MitoQ attenuated PM2.5-induced vascular fibrosis via regulating mitophagy[J]. Redox biology, 2021, 46:102113. JIN X T, SU R J, LI R J, et al. Amelioration of particulate matter-induced oxidative damage by vitamin c and quercetin in human bronchial epithelial cells[J]. Chemosphere, 2016, 144:459-466. WU S W, LI X, MENG S S, et al. Fruit and vegetable consumption, cigarette smoke, and leukocyte mitochondrial DNA copy number[J]. The American journal of clinical nutrition, 2019, 109(2):424-432. ZHOU L X, LI L P, HAO G M, et al. Sperm mtDNA copy number, telomere length, and seminal spermatogenic cells in relation to ambient air pollution:results of a cross-sectional study in Jing-Jin-Ji Region of China[J]. Journal of hazardous materials, 2021, 406:124308. CHUANG K J, CHAN C C, SU T C, et al. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults[J]. American journal of respiratory and critical care medicine, 2007, 176(4):370-376. CHUANG G C, YANG Z, WESTBROOK D G, et al. Pulmonary ozone exposure induces vascular dysfunction, mitochondrial damage, and atherogenesis[J]. American journal of physiology lung cellular and molecular physiology, 2009, 297(2):L209-L216. LI R Y, CHEN G B, LIU X T, et al. Aging biomarkers:potential mediators of association between long-term ozone exposure and risk of atherosclerosis[J]. Journal of internal medicine, 2022, 292(3):512-522. SILVA RAMOS E, LARSSON N G, MOURIER A. Bioenergetic roles of mitochondrial fusion[J]. Biochimica et biophysica acta (BBA)-bioenergetics, 2016, 1857(8):1277-1283. LI R J, KOU X J, GENG H, et al. Effect of ambient PM2.5 on lung mitochondrial damage and fusion/fission gene expression in rats[J]. Chemical research in toxicology, 2015, 28(3):408-418. THOMAS CRIBBS J, STRACK S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death[J]. EMBO reports, 2007, 8(10):939-944. ROUSCHOP S H, SNOW S J, KODAVANTI U P, et al. Perinatal high-fat diet influences ozone-induced responses on pulmonary oxidant status and the molecular control of mitophagy in female rat offspring[J]. International journal of molecular sciences, 2021, 22(14):7551. GÓMEZ-CRISÓSTOMO N P, RIVAS-ARANCIBIA S, RODRÍGUEZ-MARTÍNEZ E, et al. Chronic exposure to ozone induces cardiac antioxidant response and overexpression of either mitochondrial fision protein DRP1 and hipertrophyc-related proteins[J]. Journal of bioenergetics and biomembranes, 2022, 54(3):145-152. MARIAN A J. Copy number variants and the genetic enigma of congenital heart disease[J]. Circulation research, 2014, 115(10):821-823. ZHAO D, GUALLAR E, LONGCHAMPS R, et al. Abstract 049:mitochondrial DNA copy number and incident atrial fibrillation:the atherosclerosis risk in communities study (ARIC)[J]. Circulation, 2018, 137(suppl_1):3217-3231. HUANG J, TAN L, SHEN R F, et al. Decreased peripheral mitochondrial DNA copy number is associated with the risk of heart failure and long-term outcomes[J]. Medicine, 2016, 95(15):e3323. LAM E T, BRACCI P M, HOLLY E A, et al. Mitochondrial DNA sequence variation and risk of pancreatic cancer[J]. Cancer research, 2012, 72(3):686-695. SOBENIN I A, ZHELANKIN A V, KHASANOVA Z B, et al. Heteroplasmic variants of mitochondrial DNA in atherosclerotic lesions of human aortic intima[J]. Biomolecules, 2019, 9(9):455. TSUTSUI H, KINUGAWA S, MATSUSHIMA S. Oxidative stress and mitochondrial DNA damage in heart failure[J]. Circulation journal, 2008, 72(Suppl A):A31-A37. 邢颀颂,梁刚,武美琼,等.不同城市PM2.5对易感小鼠线粒体损伤的影响[J].中国环境科学, 2019, 39(12):7-23. 魏舒婷,姬晓彤,岳慧峰,等. PM2.5诱导人支气管上皮细胞线粒体损伤[J].环境化学, 2018, 37(9):6-24. WEI S T, JI X T, YUE H F, et al. PM2.5 induced mitochondrial injury of human bronchial epithelial cell[J]. Environmental chemistry, 2018, 37(9):6-24.
ZHANG Q, LI Q Z, MA J C, et al. PM2.5 impairs neurobehavior by oxidative stress and myelin sheaths injury of brain in the rat[J]. Environmental pollution, 2018, 242:994-1001. 范晔,孙志强,于俊博,等. PM2.5诱导人脐静脉内皮细胞EA.hy926线粒体功能异常的研究[J].中华疾病控制杂志, 2019, 23(6):6-21. CHEN M J, LI B, SANG N. Particulate matter (PM2.5) exposure season-dependently induces neuronal apoptosis and synaptic injuries[J]. Journal of environmental sciences, 2017, 54:336-345. TOVAR A, CROUSE W L, SMITH G J, et al. Integrative analysis reveals mouse strain-dependent responses to acute ozone exposure associated with airway macrophage transcriptional activity[J]. American journal of physiology lung cellular and molecular physiology, 2022, 322(1):L33-L49. TIAN L, LI N, LI K, et al. Ambient ozone exposure induces ROS related-mitophagy and pyroptosis via NLRP3 inflammasome activation in rat lung cells[J]. Ecotoxicology and environmental safety, 2022, 240:113663. ZUCCHINI N, SOUSA G D, PIZZOL J, et al. Molecular mechanisms underlying the hepatotoxicity of lindane in rat hepatocytes:apoptosis regulation and oxidative stress[C]. Germany:Proceedings of the 9th European ISSX Meeting, 2005:219-222. QIU Y N, WANG G H, ZHOU F, et al. PM2.5 induces liver fibrosis via triggering ROS-mediated mitophagy[J]. Ecotoxicology and environmental safety, 2019, 167:178-187. ZHAO Q J, CHEN H, YANG T, et al. Direct effects of airborne PM2.5 exposure on macrophage polarizations[J]. Biochimica et biophysica acta (BBA)-general subjects, 2016, 1860(12):2835-2843. DENG X B, ZHANG F, WANG L J, et al. Airborne fine particulate matter induces multiple cell death pathways in human lung epithelial cells[J]. Apoptosis, 2014, 19(7):1099-1112. GE Q W, YANG S J, QIAN Y, et al. Ambient PM2.5 exposure and bone homeostasis:analysis of UK biobank data and experimental studies in mice and in vitro[J]. Environmental health perspectives, 2023, 131(10):107002. OH S M, KIM H R, PARK Y J, et al. Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells)[J]. Mutation research, 2011, 723(2):142-151. LONGHIN E, HOLME J A, GUTZKOW K B, et al. Cell cycle alterations induced by urban PM2.5 in bronchial epithelial cells:characterization of the process and possible mechanisms involved[J]. Particle and fibre toxicology, 2013, 10:63. LIN C M, HUANG T H, CHI M C, et al. N-acetylcysteine alleviates fine particulate matter (PM2.5)-induced lung injury by attenuation of ROS-mediated recruitment of neutrophils and Ly6Chigh monocytes and lung inflammation[J]. Ecotoxicology and environmental safety, 2022, 239:113632. ZHAO D, LIU J, WANG M, et al. Epidemiology of cardiovascular disease in China:current features and implications[J]. Nature reviews cardiology, 2019, 16(4):203-212. SU X, TIAN J Z, LI B H, et al. Ambient PM2.5 caused cardiac dysfunction through FoxO1-targeted cardiac hypertrophy and macrophage-activated fibrosis in mice[J]. Chemosphere, 2020, 247:125881. VALAVANIDIS A, FIOTAKIS K, VLACHOGIANNI T. Airborne particulate matter and human health:toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms[J]. Journal of environmental science and health, part c, 2008, 26(4):339-362. ZHANG X T, ZONG L J, JIA R M, et al. Ozone attenuates chemotherapy-induced peripheral neuropathy via upregulating the AMPK-SOCS3 axis[J]. Journal of cancer research and therapeutics, 2023, 19(4):1031-1039. PEREPU R S P, DOSTAL D E, GARCIA C, et al. Cardiac dysfunction subsequent to chronic ozone exposure in rats[J]. Molecular and cellular biochemistry, 2012, 360(1/2):339-345. GOLD D R, LITONJUA A, SCHWARTZ J, et al. Ambient pollution and heart rate variability[J]. Circulation, 2000, 101(11):1267-1273. MILLER D B, SNOW S J, HENRIQUEZ A, et al. Systemic metabolic derangement, pulmonary effects, and insulin insufficiency following subchronic ozone exposure in rats[J]. Toxicology and applied pharmacology, 2016, 306:47-57. THEIS W S, ANDRINGA K K, MILLENDER-SWAIN T, et al. Ozone inhalation modifies the rat liver proteome[J]. Redox biology, 2014, 2:52-60. MILLER D B, GHIO A J, KAROLY E D, et al. Ozone exposure increases circulating stress hormones and lipid metabolites in humans[J]. American journal of respiratory and critical care medicine, 2016, 193(12):1382-1391. JANG A S, CHOI I S, KOH Y I. The relation between epithelial proliferation and airway obstruction after ozone exposure[J]. Journal of allergy and clinical immunology, 2002, 109(1):S52. THOMPSON K C, JONES S H, RENNIE A R, et al. Degradation and rearrangement of a lung surfactant lipid at the air-water interface during exposure to the pollutant gas ozone[J]. Langmuir, 2013, 29(14):4594-4602. YANG Q, GE M Q, KOKALARI B, et al. Group 2 innate lymphoid cells mediate ozone-induced airway inflammation and hyperresponsiveness in mice[J]. Journal of allergy and clinical immunology, 2016, 137(2):571-578. QUE L G, STILES J V, SUNDY J S, et al. Pulmonary function, bronchial reactivity, and epithelial permeability are response phenotypes to ozone and develop differentially in healthy humans[J]. Journal of applied physiology, 2011, 111(3):679-687. FONTECHA-BARRIUSO M, MARTIN-SANCHEZ D, MARTINEZ-MORENO J M, et al. The role of PGC-1α and mitochondrial biogenesis in kidney diseases[J]. Biomolecules, 2020, 10(2):347. ABU SHELBAYEH O, ARROUM T, MORRIS S, et al. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response[J]. Antioxidants, 2023, 12(5):1075. WANG X M, WANG Y L, HUANG D M, et al. Astragaloside Ⅳ regulates the ferroptosis signaling pathway via the Nrf2/SLC7A11/GPX4 axis to inhibit PM2.5-mediated lung injury in mice[J]. International immunopharmacology, 2022, 112:109186. LI C P, QIN G, SHI R Z, et al. Ginsenoside Rg1 reduces toxicity of PM2.5 on human umbilical vein endothelial cells by upregulating intracellular antioxidative state[J]. Environmental toxicology and pharmacology, 2013, 35(1):21-29. PANWAR V, SINGH A, BHATT M, et al. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease[J]. Signal transduction and targeted therapy, 2023, 8(1):375. LIU T, WU B, WANG Y H, et al. Particulate matter 2.5 induces autophagy via inhibition of the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin kinase signaling pathway in human bronchial epithelial cells[J]. Molecular medicine reports, 2015, 12(2):1914-1922. PEI C X, WANG F, HUANG D M, et al. Astragaloside Ⅳ protects from PM2.5-induced lung injury by regulating autophagy via inhibition of PI3K/Akt/mTOR signaling in vivo and in vitro[J]. Journal of inflammation research, 2021, 14:4707-4721. ZHU S, LI X, DANG B R, et al. Lycium barbarum polysaccharide protects HaCaT cells from PM2.5-induced apoptosis via inhibiting oxidative stress, ER stress and autophagy[J]. Redox report, 2022, 27(1):32-44. SOBERANES S, URICH D, BAKER C M, et al. Mitochondrial complex Ⅲ-generated oxidants activate ASK1 and JNK to induce alveolar epithelial cell death following exposure to particulate matter air pollution[J]. Journal of biological chemistry, 2009, 284(4):2176-2186. CHE Z, LIU Y, CHEN Y Y, et al. The apoptotic pathways effect of fine particulate from cooking oil fumes in primary fetal alveolar type Ⅱ epithelial cells[J]. Mutation research/genetic toxicology and environmental mutagenesis, 2014, 761:35-43. CHEN J, WU M, LI Y, et al. Autophagy and apoptosis of A549cell exposed to atmospheric PM2.5 in Hangzhou[J]. Environmental pollution&control, 2018, 40(11):1267-1278. REN N, LIN Y G, LIN Z, et al. Effects of PM2.5 exposure on autophagy and apoptosis in A549 cells[J]. The journal of practical medicine, 2017, 33(16):2616-2619. SARMIENTO-SALINAS F L, PEREZ-GONZALEZ A, ACOSTA-CASIQUE A, et al. Reactive oxygen species:role in carcinogenesis, cancer cell signaling and tumor progression[J]. Life sciences, 2021, 284:119942. SAUER H, WARTENBERG M, HESCHELER J. Reactive oxygen species as intracellular messengers during cell growth and differentiation[J]. Cellular physiology and biochemistry, 2001, 11(4):173-186. FAN K, DONG N, FANG M C, et al. Ozone exposure affects corneal epithelial fate by promoting mtDNA leakage and cGAS/STING activation[J]. Journal of hazardous materials, 2024, 465:133219. TEPLYAKOVA O, VINNIK Y, DROBUSHEVSKAYA A, et al. Ozone improved the wound healing in type 2 diabetics via down-regulation of IL-8, 10 and induction of FGFR expression[J]. Acta bio-medica, 2022, 93(2):e2022060. BACKUS G S, HOWDEN R, FOSTEL J, et al. Protective role of interleukin-10 in ozone-induced pulmonary inflammation[J]. Environmental health perspectives, 2010, 118(12):1721-1727. GONZÁLEZ-GUEVARA E, MARTÍNEZ-LAZCANO J C, CUSTODIO V, et al. Exposure to ozone induces a systemic inflammatory response:possible source of the neurological alterations induced by this gas[J]. Inhalation toxicology, 2014, 26(8):485-491. LI F, XU M M, WANG M Y, et al. Roles of mitochondrial ROS and NLRP3 inflammasome in multiple ozone-induced lung inflammation and emphysema[J]. Respiratory research, 2018, 19(1):230. TIAN L, YAN J, LI K, et al. Ozone exposure promotes pyroptosis in rat lungs via the TLR2/4-NF-κ B-NLRP3 signaling pathway[J]. Toxicology, 2021, 450:152668. SUNIL V R, PATEL-VAYAS K, SHEN J L, et al. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress[J]. Toxicology and applied pharmacology, 2012, 263(2):195-202. FAKHRZADEH L, LASKIN J D, LASKIN D L. Regulation of caveolin-1 expression, nitric oxide production and tissue injury by tumor necrosis factor-α following ozone inhalation[J]. Toxicology and applied pharmacology, 2008, 227(3):380-389. POLOSA R, SAPSFORD R J, DOKIC D, et al. Induction of the epidermal growth factor receptor and its ligands in nasal epithelium by ozone[J]. Journal of allergy and clinical immunology, 2004, 113(1):120-126. FENG F F, JIN Y F, DUAN L J, et al. Regulation of ozone-induced lung inflammation by the epidermal growth factor receptor in mice[J]. Environmental toxicology, 2016, 31(12):2016-2027. BOWERS E C, MCCULLOUGH S D, MORGAN D S, et al. ERK1/2 and p38 regulate inter-individual variability in ozone-mediated IL-8 gene expression in primary human bronchial epithelial cells[J]. Scientific reports, 2018, 8(1):9398. WU W D, WAGES P A, DEVLIN R B, et al. SRC-mediated EGF receptor activation regulates ozone-induced interleukin 8 expression in human bronchial epithelial cells[J]. Environmental health perspectives, 2015, 123(3):231-236. WENG J L, LIU Q, LI C F, et al. TRPA1-PI3K/Akt-OPA1-ferroptosis axis in ozone-induced bronchial epithelial cell and lung injury[J]. Science of the total environment, 2024, 918:170668. WANG M, ZHANG Y, XU M, et al. Roles of TRPA1 and TRPV1 in cigarette smoke-induced airway epithelial cell injury model[J]. Free radical biology and medicine, 2019, 134:229-238. LU Q B, DING Y, LIU Y, et al. Metrnl ameliorates diabetic cardiomyopathy via inactivation of cGAS/STING signaling dependent on LKB1/AMPK/ULK1-mediated autophagy[J]. Journal of advanced research, 2023, 51:161-179. ZHANG Y, YIN K, WANG D X, et al. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-κ B-NLRP3-GSDMD and AMPK-PGC-1α axes[J]. Science of the total environment, 2022, 840:156727. LI X C, ZHUGE Z B, CARVALHO L R R A, et al. Inorganic nitrate and nitrite ameliorate kidney fibrosis by restoring lipid metabolism via dual regulation of AMP-activated protein kinase and the AKT-PGC1α pathway[J]. Redox biology, 2022, 51:102266. GRAHAME HARDIE D. AMP-activated/SNF1 protein kinases:conserved guardians of cellular energy[J]. Nature reviews molecular cell biology, 2007, 8(10):774-785. LI F, ZHANG M, HUSSAIN F, et al. Inhibition of p38 MAPK-dependent bronchial contraction after ozone by corticosteroids[J]. European respiratory journal, 2011, 37(4):933-942. MCCULLOUGH S D, DUNCAN K E, SWANTON S M, et al. Ozone induces a proinflammatory response in primary human bronchial epithelial cells through mitogen-activated protein kinase activation without nuclear factor-κ B activation[J]. American journal of respiratory cell and molecular biology, 2014, 51(3):426-435. KIM C S, ALEXIS N E, RAPPOLD A G, et al. Lung function and inflammatory responses in healthy young adults exposed to 0.06 ppm ozone for 6.6 hours[J]. American journal of respiratory and critical care medicine, 2011, 183(9):1215-1221. BAO A H, LI F, ZHANG M, et al. Impact of ozone exposure on the response to glucocorticoid in a mouse model of asthma:involvements of P38 MAPK and MKP-1[J]. Respiratory research, 2014, 15(1):126. HE F, RU X L, WEN T. Nrf2, a transcription factor for stress response and beyond[J]. International journal of molecular sciences, 2020, 21(13):4777. KIM M Y, SONG K S, PARK G H, et al. B6C3F1 mice exposed to ozone with 4-(N-methyl-N-nitrosamino)-1-(3-pyridyl)-1-butanone and/or dibutyl phthalate showed toxicities through alterations of NF-kappaB, AP-1, Nrf2, and osteopontin[J]. Journal of veterinary science, 2004, 5(2):131-137. RE L, MARTÍNEZ-SÁNCHEZ G, BORDICCHIA M, et al. Is ozone pre-conditioning effect linked to Nrf2/EpRE activation pathway in vivo?A preliminary result[J]. European journal of pharmacology, 2014, 742:158-162. DING S Y, DUANMU X Y, XU L S, et al. Ozone pretreatment alleviates ischemiareperfusion injury-induced myocardial ferroptosis by activating the Nrf2/Slc7a11/Gpx4 axis[J]. Biomedicine&pharmacotherapy, 2023, 165:115185. ZHANG Y Q, JASON WEST J, MATHUR R, et al. Long-term trends in the ambient PM2.5-and O3-related mortality burdens in the United States under emission reductions from 1990 to 2010[J]. Atmospheric chemistry and physics, 2018, 18(20):15003-15016. BRUNO M, GE Y, FARRAJ A. Characterization of impacts of the interactions between concentrated ambient particles and ozone on protein and toxicity responses in rat lung and aorta tissues[J]. Society of toxicology, 2020, 165(2):263-271. KASAHARA D I, MATHEWS J A, PARK C Y, et al. ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice[J]. American journal of physiology lung cellular and molecular physiology, 2015, 309(7):L736-L746. SUN X W, LIN Y N, DING Y J, et al. Surfaxin attenuates PM2.5-induced airway inflammation via restoring surfactant proteins in rats exposed to cigarette smoke[J]. Environmental research, 2022, 203:111864. XI Y Z, RICHARDSON D B, KSHIRSAGAR A V, et al. Effects of short-term ambient PM2.5 exposure on cardiovascular disease incidence and mortality among U.S. hemodialysis patients:a retrospective cohort study[J]. Environmental health, 2022, 21(1):33. HEUSSER K, TANK J, HOLZ O, et al. Ultrafine particles and ozone perturb norepinephrine clearance rather than centrally generated sympathetic activity in humans[J]. Scientific reports, 2019, 9(1):3641. -

计量
- 文章访问数: 280
- HTML全文浏览数: 280
- PDF下载数: 72
- 施引文献: 0