重金属生物可给性体外模拟方法研究进展
Research Progress of In vitro Assessment of Heavy Metals Bioaccessibility
-
摘要: 随着社会经济的快速发展,环境中重金属污染问题日益突出。重金属可通过食物链富集、传递进入人体,具有潜在食品安全风险和人体健康风险。目前,土壤中重金属的生态环境风险和食物中重金属的食品安全风险和人体健康风险通常基于总量进行评估。然而,经物理化学作用驱动的解吸过程溶解于消化液的部分(即生物可给部分)才有可能被人体吸收,故基于总量的评价方法易导致风险被高估。因此,基于重金属生物可给性的评价方法引起广泛关注。已发展的可预测或评估污染介质中重金属生物可给性的体外模拟方法主要包括PBET (physiologically based extraction test)、IVG (in vitro gastrointestinal)、UBM (Unified BARGE Method)、DIN (Deutsches Institut für Normung e.V.)和SBRC (Solubility or Bioavailability Research Consortium)等,不同方法在胃肠模拟液成分、适用性和准确性等方面存在差异。因此,本文通过介绍重金属生物可给性体外模拟方法的特点与应用现状,重点阐述不同方法的适用性、准确性及其影响因素,并对其推广应用和后续研究进行了展望,以期为重金属食品安全风险与人体健康风险的科学预测与评价及重金属超标风险管控提供理论依据和方法参考。Abstract: With the rapid development of society and economy, the environmental pollution induced by heavy metals has increased. Heavy metals can be accumulated and transported via food chain, thereby posing potential risks to food safety and human health. Generally, the ecological-environmental, food safety and human health risks of heavy metals are evaluated based on the total concentration. However, the bioaccessible fraction after physicochemical desorption from the contaminated matrix is the part potentially absorbed by human body. Therefore, risk assessment based on the total concentration leads to risk-overestimation. At present, risk assessment based on heavy metals bioaccessibility has attracted increasing attention. The developed in vitro methods to predict or assess metals bioaccessibility include Physiologically Based Extraction Test (PBET), In vitro Gastrointestinal (IVG), Unified BARGE Method (UBM), Deutsches Institut für Normung e.V. (DIN) and Solubility or Bioavailability Research Consortium (SBRC). However, methods show great differences in simulation solution composition, applicability and accuracy. Therefore, this review introduces the characteristics and application of different in vitro methods, with more emphasis on clarifying their applicability, accuracy and the associated influencing factors. In addition, the ways to improve the assessment accuracy of in vitro methods are proposed. The information helps to better predict and evaluate heavy metals risk and provides theoretical and technical supports for risk control.
-
Key words:
- heavy metals /
- bioaccessibility /
- in vitro simulation /
- influencing factors /
- accuracy
-
-
YANG Q Q, LI Z Y, LU X N, et al. A review of soil heavy metal pollution from industrial and agricultural regions in China:pollution and risk assessment[J]. Science of the total environment, 2018, 642:690-700. 环境保护部,国土资源部.全国土壤污染状况调查公报[R].北京:环境保护部,国土资源部, 2014:2-4. 刘连华,张晴雯,王依滴,等.流域重金属迁移模型研究进展[J].中国环境科学, 2023, 43(8):4229-4238. LIU L H, ZHANG Q W, WANG Y D, et al. Research progress on heavy metal migration model at watershed scale[J]. China environmental science, 2023, 43(8):4229-4238.
OUYANG W, WANG Y D, LIN C Y, et al. Heavy metal loss from agricultural watershed to aquatic system:a scientometrics review[J]. Science of the total environment, 2018, 637:208-220. ZHANG J, HU H Y, WANG M Y, et al. Land application of sewage sludge biochar:assessments of soil-plant-human health risks from potentially toxic metals[J]. Science of the total environment, 2021, 756:144137. ZHENG S N, WANG Q, YUAN Y Z, et al. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China[J]. Food chemistry, 2020, 316:126213. RIGBY H, SMITH S R. The significance of cadmium entering the human food chain via livestock ingestion from the agricultural use of biosolids, with special reference to the UK[J]. Environment international, 2020, 143:105844. WANG C C, ZHANG Q C, KANG S G, et al. Heavy metal (loid) s in agricultural soil from main grain production regions of China:bioaccessibility and health risks to humans[J]. Science of the total environment, 2023, 858:159819. JANNETTO P J, COWL C T. Elementary overview of heavy metals[J]. Clinical chemistry, 2023, 69(4):336-349. JIN J L, ZHAO X G, ZHANG L, et al. Heavy metals in daily meals and food ingredients in the Yangtze River Delta and their probabilistic health risk assessment[J]. Science of the total environment, 2023, 854:158713. HAN Q, WANG M S, CAO J L, et al. Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo, China[J]. Ecotoxicology and environmental safety, 2020, 191:110157. SAFIUR RAHMAN M, KHAN M D H, JOLLY Y N, et al. Assessing risk to human health for heavy metal contamination through street dust in the Southeast Asian Megacity:Dhaka, Bangladesh[J]. Science of the total environment, 2019, 660:1610-1622. DONG Z M, HU J Y. Development of lead source-specific exposure standards based on aggregate exposure assessment:Bayesian inversion from biomonitoring information to multipathway exposure[J]. Environmental science&technology, 2012, 46(2):1144-1152. XU X, WANG J H, WU H H, et al. Bioaccessibility and bioavailability evaluation of heavy metal (loid) s in ginger in vitro:relevance to human health risk assessment[J]. Science of the total environment, 2023, 857:159582. BILLMANN M, HULOT C, PAUGET B, et al. Oral bioaccessibility of PTEs in soils:a review of data, influencing factors and application in human health risk assessment[J]. Science of the total environment, 2023, 896:165263. YIN N Y, LI Y P, YANG Y T, et al. Human health risk assessment in aluminium smelting site:soil fluoride bioaccessibility and relevant mechanism in simulated gastrointestinal tract[J]. Journal of hazardous materials, 2021, 416:125899. MOREDA-PIÑEIRO J, MOREDA-PIÑEIRO A, ROMA-RÍS-HORTAS V, et al. In-vivo and in vitro testing to assess the bioaccessibility and the bioavailability of arsenic, selenium and mercury species in food samples[J]. TrAC trends in analytical chemistry, 2011, 30(2):324-345. JI H H, HU J L, ZUO S, et al. In vitro gastrointestinal digestion and fermentation models and their applications in food carbohydrates[J]. Critical reviews in food science and nutrition, 2022, 62(19):5349-5371. OOMEN A G, ROMPELBERG C J M, BRUIL M A, et al. Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants[J]. Archives of environmental contamination and toxicology, 2003, 44(3):281-287. LI H B, LI M Y, ZHAO D, et al. Oral bioavailability of As, Pb, and Cd in contaminated soils, dust, and foods based on animal bioassays:a review[J]. Environmental science&technology, 2019, 53(18):10545-10559. OOMEN A G, HACK A, MINEKUS M, et al. Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants[J]. Environmental science&technology, 2002, 36(15):3326-3334. RUBY M V, SCHOOF R, BRATTIN W, et al. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment[J]. Environmental science&technology, 1999, 33(21):3697-3705. EVANS R M, MARTIN O V, FAUST M, et al. Should the scope of human mixture risk assessment span legislative/regulatory silos for chemicals?[J]. Science of the total environment, 2016, 543:757-764. KASTURY F, PLACITU S, BOLAND J, et al. Relationship between Pb relative bioavailability and bioaccessibility in phosphate amended soil:uncertainty associated with predicting Pb immobilization efficacy using in vitro assays[J]. Environment international, 2019, 131:104967. MILLER D D, SCHRICKER B R, RASMUSSEN R R, et al. An in vitro method for estimation of iron availability from meals[J]. The American journal of clinical nutrition, 1981, 34(10):2248-2256. RUBY M V, DAVIS A, SCHOOF R, et al. Estimation of lead and arsenic bioavailability using a physiologically based extraction test[J]. Environmental science&technology, 1996, 30(2):422-430. RODRIGUEZ R R, BASTA N T, CASTEEL S W, et al. An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media[J]. Environmental science&technology, 1999, 33(4):642-649. KELLEY M E, BRAUNING S E, SCHOOF R, et al. Assessing oral bioavailability of metals in soil[M]. Ohio:Battelle Press, 2002:2-5. HACK A, SELENKA F. Mobilization of PAH and PCB from contaminated soil using a digestive tract model[J]. Toxicology letters, 1996, 88(1/2/3):199-210. Deutsches Institut für Normung (DIN). DIN 19738 soil quality-absorption availability of organic and inorganic pollutants from contaminated soil material[S]. Berlin:Deutsches Institut für Normung, 2004:6-12. WRAGG J, CAVE M, TAYLOR H, et al. Inter-laboratory trial of a unified bioaccessibility testing procedure[R]. Britain:British Geological Survey, 2009:38-48. International Organization for Standardization (ISO). ISO 17924:2018 Soil quality-assessment of human exposure from ingestion of soil and soil material-procedure for the estimation of the human bioaccessibility/bioavailability of metals in soil[S]. Geneva:International Organization for Standardization, 2018:11-14. 李诺,张东杰,张桂芳,等.体外模拟消化技术研究进展[J].食品与机械, 2021, 37(3):201-206. LI N, ZHANG D J, ZHANG G F, et al. Advances in the study of in vitro simulated digestion[J]. Food&machinery, 2021, 37(3):201-206.
WANG L H, YIN X X, GAO S L, et al. In vitro oral bioaccessibility investigation and human health risk assessment of heavy metals in wheat grains grown near the mines in North China[J]. Chemosphere, 2020, 252:126522. LI H B, LI M Y, ZHAO D, et al. Arsenic, lead, and cadmium bioaccessibility in contaminated soils:measurements and validations[J]. Critical reviews in environmental science and technology, 2020, 50(13):1303-1338. LI J, LI K, CAVE M, et al. Lead bioaccessibility in 12 contaminated soils from China:correlation to lead relative bioavailability and lead in different fractions[J]. Journal of hazardous materials, 2015, 295:55-62. LI H B, LI J, ZHU Y G, et al. Comparison of arsenic bioaccessibility in housedust and contaminated soils based on four in vitro assays[J]. Science of the total environment, 2015, 532:803-811. CHEN J Y, ZENG J Y, DING S, et al. Arsenic contents, speciation and bioaccessibility in rice grains from China:regional and variety differences[J]. Journal of hazardous materials, 2022, 437:129431. 陈廷廷,侯艳伟,蔡超,等.应用四种体外消化方法比较研究场地土壤中重金属的生物可给性及其人体健康风险[J].环境化学, 2018, 37(11):2342-2350. CHEN T T, HOU Y W, CAI C, et al. Bioaccessibility and human health risk assessment of heavy metals in soils by using four in vitro digestion methods[J]. Environmental chemistry, 2018, 37(11):2342-2350.
KUMARI M, PLATEL K. Bioaccessibility of trace elements and chromium speciation in commonly consumed cereals and pulses[J]. International journal of food properties, 2017, 20(7):1612-1620. WANG P F, YIN N Y, CAI X L, et al. Variability of chromium bioaccessibility and speciation in vegetables:the influence of in vitro methods, gut microbiota and vegetable species[J]. Food chemistry, 2019, 277:347-352. ALAVA P, DU LAING G, ODHIAMBO M, et al. Arsenic bioaccessibility upon gastrointestinal digestion is highly determined by its speciation and lipid-bile salt interactions[J]. Journal of environmental science and health, part A, 2013, 48(6):656-665. FU Y Q, DU H L, WANG P F, et al. Effects of foods and food components on the in vitro bioaccessibility of total arsenic and arsenic species from Hizikia fusiforme seaweed[J]. Science of the total environment, 2023, 900:165775. GIRARD C, CHARETTE T, LECLERC M, et al. Cooking and co-ingested polyphenols reduce in vitro methylmercury bioaccessibility from fish and may alter exposure in humans[J]. Science of the total environment, 2018, 616:863-874. SUN S, ZHOU X F, LI Y W, et al. Use of dietary components to reduce the bioaccessibility and bioavailability of cadmium in rice[J]. Journal of agricultural and food chemistry, 2020, 68(14):4166-4175. PEIXOTO R R A, DEVESA V, VÉLEZ D, et al. Study of the factors influencing the bioaccessibility of 10 elements from chocolate drink powder[J]. Journal of food composition and analysis, 2016, 48:41-47. WHITACRE S, BASTA N, STEVENS B, et al. Modification of an existing in vitro method to predict relative bioavailable arsenic in soils[J]. Chemosphere, 2017, 180:545-552. VAN DE WIELE T R, OOMEN A G, WRAGG J, et al. Comparison of five in vitro digestion models to in vivo experimental results:lead bioaccessibility in the human gastrointestinal tract[J]. Journal of environmental science and health, part A, 2007, 42(9):1203-1211. LIU B, PENG T J, SUN H J, et al. Release behavior of uranium in uranium mill tailings under environmental conditions[J]. Journal of environmental radioactivity, 2017, 171:160-168. FAN J, ZHAO L, KAN J H, et al. Uptake of vegetable and soft drink affected transformation and bioaccessibility of lead in gastrointestinal track exposed to lead-contaminated soil particles[J]. Ecotoxicology and environmental safety, 2020, 194:110411. SMITH E, SCHECKEL K, MILLER B W, et al. Influence of in vitro assay pH and extractant composition on as bioaccessibility in contaminated soils[J]. Science of the total environment, 2014, 473:171-177. 李韵雪,闵远洋,麦晋贤,等.岗梅药材重金属生物可给性及其人体健康风险评价[J].生态毒理学报, 2022, 17(2):402-412. LI Y X, MIN Y Y, MAI J X, et al. Bioavailability determination and human health risk assessment of heavy metals in Ilex asprella medicinal materials[J]. Asian journal of ecotoxicology, 2022, 17(2):402-412.
郑顺安,韩允垒,刘代丽,等.土壤汞生物可给性的影响因素研究:基于体外模拟(in vitro)法[J].环境化学, 2019, 38(12):2665-2671. ZHENG S A, HAN Y L, LIU D L, et al. Influence of soil properties on the Hg bioaccessibility in polluted soils investigated by in vitro digestion approaches[J]. Environmental chemistry, 2019, 38(12):2665-2671.
都慧丽,尹乃毅,张震南,等.肠道微生物对土壤中铜、锌、锰生物可给性的影响[J].生态毒理学报, 2017, 12(3):301-308. DU H L, YIN N Y, ZHANG Z N, et al. Effect of human gut microbiota on bioaccessibility of soil Cu, Zn and Mn[J]. Asian journal of ecotoxicology, 2017, 12(3):301-308.
郭剑波,常旭卉,陈龙,等.环丙沙星和镉复合污染土壤中镉的生物可给性及其动态变化[J].农业资源与环境学报, 2021, 38(2):185-190. GUO J B, CHANG X H, CHEN L, et al. Bioaccessibility and dynamic dissolution of cadmium from compound-contaminated soils containing cadmium and ciprofloxacin[J]. Journal of agricultural resources and environment, 2021, 38(2):185-190.
冯凯,鲍建国,孔淑琼,等. SBRC体外模拟法对含砷矿物生物可给性的研究[J].环境科学与技术, 2018, 41(11):33-43. FENG K, BAO J G, KONG S Q, et al. Bioaccessibility of arsenic bearing minerals using in vitro extraction method of SBRC[J]. Environmental science&technology, 2018, 41(11):33-43.
尹乃毅,崔岩山,张震南,等.土壤中金属的生物可给性及其动态变化的研究[J].生态环境学报, 2014, 23(2):317-325. YIN N Y, CUI Y S, ZHANG Z N, et al. Bioaccessibility and dynamic dissolution of metals in contaminated soils[J]. Ecology and environmental sciences, 2014, 23(2):317-325.
KASTURY F, SMITH E, JUHASZ A L. A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal (loid) s from ambient particulate matter or dust[J]. Science of the total environment, 2017, 574:1054-1074. JUHASZ A L, WEBER J, SMITH E. Predicting arsenic relative bioavailability in contaminated soils using meta analysis and relative bioavailability-bioaccessibility regression models[J]. Environmental science&technology, 2011, 45(24):10676-10683. JUHASZ A L, WEBER J, SMITH E. Influence of saliva, gastric and intestinal phases on the prediction of as relative bioavailability using the Unified Bioaccessibility Research Group of Europe Method (UBM)[J]. Journal of hazardous materials, 2011, 197:161-168. EXPÓSITO A, MARKIV B, RUIZ-AZCONA L, et al. Understanding how methodological aspects affect the release of trace metal (loid) s from urban dust in inhalation bioaccessibility tests[J]. Chemosphere, 2021, 267:129181. SMITH B A, KIRK J L, STEPHENSON G L. The influence of liquid to soil ratios on arsenic and lead bioaccessibility in reference and field soil[J]. Human and ecological risk assessment:an international journal, 2010, 16(1):149-162. 付瑾,崔岩山. In vitro系统评价胃肠液pH及土液比对铅、镉、砷生物可给性的影响[J].农业环境科学学报, 2012, 31(2):245-251. FU J, CUI Y S. In vitro model system to evaluate the influence of pH and soil-gastric/intestinal juices ratio on bioaccessibility of Pb, Cd and As in two typical contaminated soils[J]. Journal of agro-environment science, 2012, 31(2):245-251.
YANG J K, BARNETT M O, JARDINE P M, et al. Factors controlling the bioaccessibility of arsenic (V) and lead (II) in soil[J]. Soil and sediment contamination:an international journal, 2003, 12(2):165-179. XIE W S, PENG C, WANG H T, et al. Bioaccessibility and source identification of heavy metals in agricultural soils contaminated by mining activities[J]. Environmental earth sciences, 2018, 77(17):606. LUO X S, DING J, XU B, et al. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils[J]. Science of the total environment, 2012, 424:88-96. AI Y W, LI X P, GAO Y, et al. In vitro bioaccessibility of potentially toxic metals (PTMs) in Baoji urban soil (NW China) from different functional areas and its implication for health risk assessment[J]. Environmental geochemistry and health, 2019, 41(2):1055-1073. 王萍,赵瑞霞,陈子慧,等.基于生物可给性的广东省居民主要消费海水鱼膳食暴露评估应用初探[J].中国食品卫生杂志, 2021, 33(2):200-205. WANG P, ZHAO R X, CHEN Z H, et al. Bioaccessibility of methylmercury from marine fish commonly consumed in Guangdong Province and its application in dietary exposure assessment[J]. Chinese journal of food hygiene, 2021, 33(2):200-205.
TIAN H Q, WANG Y Z, XIE J F, et al. Effects of soil properties and land use types on the bioaccessibility of Cd, Pb, Cr, and Cu in Dongguan City, China[J]. Bulletin of environmental contamination and toxicology, 2020, 104(1):64-70. LIN C, PING M L, ZHANG X, et al. In vitro bio-accessibility and distribution characteristic of each arsenic species in different fishes and shellfishes/shrimps collected from Fujian of China[J]. Journal of hazardous materials, 2021, 420:126660. TANG W Z, XIA Q, SHAN B Q, et al. Relationship of bioaccessibility and fractionation of cadmium in long-term spiked soils for health risk assessment based on four in vitro gastrointestinal simulation models[J]. Science of the total environment, 2018, 631:1582-1589. POGGIO L, VRŠČAJ B, SCHULIN R, et al. Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy)[J]. Environmental pollution, 2009, 157(2):680-689. FARMER J G, BROADWAY A, CAVE M R, et al. A lead isotopic study of the human bioaccessibility of lead in urban soils from Glasgow, Scotland[J]. Science of the total environment, 2011, 409(23):4958-4965. GBEFA B K, ENTWISTLE J A, DEAN J R. Oral bioaccessibility of metals in an urban catchment, Newcastle upon Tyne[J]. Environmental geochemistry and health, 2011, 33(2):167-181. FAZLE BARI A S M, LAMB D, CHOPPALA G, et al. Arsenic bioaccessibility and fractionation in abandoned mine soils from selected sites in New South Wales, Australia and human health risk assessment[J]. Ecotoxicology and environmental safety, 2021, 223:112611. CHU Z L, LIN C Y, YANG K, et al. Lability, bioaccessibility, and ecological and health risks of anthropogenic toxic heavy metals in the arid calcareous soil around a nonferrous metal smelting area[J]. Chemosphere, 2022, 307:136200. BARSBY A, MCKINLEY J M, OFTERDINGER U, et al. Bioaccessibility of trace elements in soils in northern Ireland[J]. Science of the total environment, 2012, 433:398-417. BOISA N, BIRD G, BREWER P A, et al. Potentially harmful elements (PHEs) in scalp hair, soil and metallurgical wastes in Mitrovica, Kosovo:the role of oral bioaccessibility and mineralogy in human PHE exposure[J]. Environment international, 2013, 60:56-70. PELFRÊNE A, WATERLOT C, MAZZUCA M, et al. Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France)[J]. Environmental geochemistry and health, 2011, 33(5):477-493. LIU S Y, TIAN S H, LI K X, et al. Heavy metal bioaccessibility and health risks in the contaminated soil of an abandoned, small-scale lead and zinc mine[J]. Environmental science and pollution research international, 2018, 25(15):15044-15056. LOUZON M, PELFRÊNE A, PAUGET B, et al. Bioaccessibility of metal (loid) s in soils to humans and their bioavailability to snails:a way to associate human health and ecotoxicological risk assessment?[J]. Journal of hazardous materials, 2020, 384:121432. GAO S, WANG W X. Oral bioaccessibility of toxic metals in contaminated oysters and relationships with metal internal sequestration[J]. Ecotoxicology and environmental safety, 2014, 110:261-268. DU F, YANG Z G, LIU P, et al. Bioaccessibility and variation of arsenic species in polished rice grains by an in vitro physiologically based extraction test method[J]. Food chemistry, 2019, 293:1-7. SHARAFI K, NODEHI R N, MAHVI A H, et al. Bioaccessibility analysis of toxic metals in consumed rice through an in vitro human digestion model:comparison of calculated human health risk from raw, cooked and digested rice[J]. Food chemistry, 2019, 299:125126. SIEDLIKOWSKI M, BRADLEY M, KUBOW S, et al. Bioaccessibility and bioavailability of methylmercury from seafood commonly consumed in North America:in vitro and epidemiological studies[J]. Environmental research, 2016, 149:266-273. INTAWONGSE M, KONGCHOUY N, DEAN J R. Bioaccessibility of heavy metals in the seaweed Caulerpa racemosa var. corynephora:human health risk from consumption[J]. Instrumentation science&technology, 2018, 46(6):628-644. BOCATO M Z, XIMENEZ J P B, HOFFMANN C, et al. An overview of the current progress, challenges, and prospects of human biomonitoring and exposome studies[J]. Journal of toxicology and environmental health, part B, 2019, 22(5/6):131-156. WANG P F, YIN N Y, CAI X L, et al. Comparison of bioaccessibility and relative bioavailability of arsenic in rice bran:the in vitro with PBET/SHIME and in vivo with mice model[J]. Chemosphere, 2020, 259:127443. LI S W, CHANG M H, HUANG X Y, et al. Coupling in vitro assays with sequential extraction to investigate cadmium bioaccessibility in contaminated soils[J]. Chemosphere, 2022, 288:132655. YU H Y, WU B, ZHANG X X, et al. Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut microbiota[J]. Environmental science&technology, 2016, 50(13):7189-7197. MOHAN D, PITTMAN C U. Arsenic removal from water/wastewater using adsorbents:a critical review[J]. Journal of hazardous materials, 2007, 142(1/2):1-53. IMPELLITTERI C A. Effects of pH and phosphate on metal distribution with emphasis on as speciation and mobilization in soils from a lead smelting site[J]. Science of the total environment, 2005, 345(1/2/3):175-190. HU L, WANG X L, WU D S, et al. Effects of organic selenium on absorption and bioaccessibility of arsenic in radish under arsenic stress[J]. Food chemistry, 2021, 344:128614. SHI J D, ZHAO D, REN F T, et al. Spatiotemporal variation of soil heavy metals in China:the pollution status and risk assessment[J]. Science of the total environment, 2023, 871:161768. TANG F, LI Z, ZHAO Y P, et al. Geochemical contamination, speciation, and bioaccessibility of trace metals in road dust of a megacity (Guangzhou) in Southern China:implications for human health[J]. International journal of environmental research and public health, 2022, 19(23):15942. 郭莹莹,张弛,段志鹏,等.基于形态与in vitro方法的铬污染土壤生物可给性研究[J].环境科学学报, 2022, 42(10):430-440. GUO Y Y, ZHANG C, DUAN Z P, et al. Bioaccessibility of chromium contaminated soil based on speciation and in vitro methods[J]. Acta scientiae circumstantiae, 2022, 42(10):430-440.
CHEN X J, MA J J, YU R L, et al. Bioaccessibility of microplastic-associated heavy metals using an in vitro digestion model and its implications for human health risk assessment[J]. Environmental science and pollution research international, 2022, 29(51):76983-76991. WU Z, FENG X B, LI P, et al. Comparison of in vitro digestion methods for determining bioaccessibility of Hg in rice of China[J]. Journal of environmental sciences, 2018, 68:185-193. WRAGG J, CAVE M, BASTA N, et al. An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil[J]. Science of the total environment, 2011, 409(19):4016-4030. BASTA N T, JUHASZ A. Using in vivo bioavailability and/or in vitro gastrointestinal bioaccessibility testing to adjust human exposure to arsenic from soil ingestion[J]. Reviews in mineralogy and geochemistry, 2014, 79(1):451-472. JUHASZ A L, SMITH E, NELSON C, et al. Variability associated with as in vivo-in vitro correlations when using different bioaccessibility methodologies[J]. Environmental science&technology, 2014, 48(19):11646-11653. LI S W, SUN H J, LI H B, et al. Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils[J]. Environment international, 2016, 94:600-606. JUHASZ A L, SCHECKEL K G, BETTS A R, et al. Predictive capabilities of in vitro assays for estimating Pb relative bioavailability in phosphate amended soils[J]. Environmental science&technology, 2016, 50(23):13086-13094. LI H B, LI J, JUHASZ A L, et al. Correlation of in vivo relative bioavailability to in vitro bioaccessibility for arsenic in household dust from China and its implication for human exposure assessment[J]. Environmental science&technology, 2014, 48(23):13652-13659. LI H B, CUI X Y, LI K, et al. Assessment of in vitro lead bioaccessibility in house dust and its relationship to in vivo lead relative bioavailability[J]. Environmental science&technology, 2014, 48(15):8548-8555. ZHENG X M, ZHANG Z Y, CHEN J C, et al. Comparative evaluation of in vivo relative bioavailability and in vitro bioaccessibility of arsenic in leafy vegetables and its implication in human exposure assessment[J]. Journal of hazardous materials, 2022, 423:126909. 郑小曼.叶菜类蔬菜中砷的生物有效性研究[D].南宁:广西大学, 2017:23-28. ZHENG X M. Study on the bioavailability of arsenic in leafy vegetables[D]. Nanning:Guangxi University, 2017:23 -28.
WEI Y Y, ZHENG X M, ZHANG Z Y, et al. In vivo-In vitro correlations for the assessment of cadmium bioavailability in vegetables[J]. Journal of agricultural and food chemistry, 2021, 69(41):12295-12304. LI J, LI K, CUI X Y, et al. In vitro bioaccessibility and in vivo relative bioavailability in 12 contaminated soils:method comparison and method development[J]. Science of the total environment, 2015, 532:812-820. ZHU X, LI M Y, CHEN X Q, et al. As, Cd, and Pb relative bioavailability in contaminated soils:coupling mouse bioassay with UBM assay[J]. Environment international, 2019, 130:104875. LIU Z D, LI H B, FANG X, et al. Investigating lead species and bioavailability in contaminated soils:coupling DGT technique with artificial gastrointestinal extraction and in vivo bioassay[J]. Environmental science&technology, 2019, 53(10):5717-5724. ZHUANG P, SUN S, ZHOU X F, et al. Bioavailability and bioaccessibility of cadmium in contaminated rice by in vivo and in vitro bioassays[J]. Science of the total environment, 2020, 719:137453. -

计量
- 文章访问数: 265
- HTML全文浏览数: 265
- PDF下载数: 75
- 施引文献: 0