纳米塑料检测技术现状分析及其研究进展

赵震乾, 唐子豪, 巩杨, 童文君, 董小伟, 吴晟旻. 纳米塑料检测技术现状分析及其研究进展[J]. 生态毒理学报, 2025, 20(1): 209-220. doi: 10.7524/AJE.1673-5897.20240828001
引用本文: 赵震乾, 唐子豪, 巩杨, 童文君, 董小伟, 吴晟旻. 纳米塑料检测技术现状分析及其研究进展[J]. 生态毒理学报, 2025, 20(1): 209-220. doi: 10.7524/AJE.1673-5897.20240828001
ZHAO Zhenqian, TANG Zihao, GONG Yang, TONG Wenjun, DONG Xiaowei, WU Shengmin. Current State and Research Progress of Nanoplastics Detection[J]. Asian journal of ecotoxicology, 2025, 20(1): 209-220. doi: 10.7524/AJE.1673-5897.20240828001
Citation: ZHAO Zhenqian, TANG Zihao, GONG Yang, TONG Wenjun, DONG Xiaowei, WU Shengmin. Current State and Research Progress of Nanoplastics Detection[J]. Asian journal of ecotoxicology, 2025, 20(1): 209-220. doi: 10.7524/AJE.1673-5897.20240828001

纳米塑料检测技术现状分析及其研究进展

    作者简介: 赵震乾(1991—),男,硕士,助理研究员,研究方向为新污染物治理,E-mail:zhaocug2018@163.com
    通讯作者: 吴晟旻,E-mail:wsm@nies.org
  • 基金项目:

    国家重点研发计划课题“生物制造全流程优化设计与绿色量化评价”(2022YFC2105401.2)

  • 中图分类号: X171.5

Current State and Research Progress of Nanoplastics Detection

    Corresponding author: WU Shengmin, wsm@nies.org
  • Fund Project:
  • 摘要: 纳米塑料环境风险已引起广泛关注,发展纳米塑料检测方法对于研究其环境行为与生态效应具有重要意义。本文以2005年以来发表的纳米塑料相关研究文献为基础,对纳米塑料的研究开展了Meta分析。阐述了纳米塑料检测技术的最新研究成果,其中包含纳米塑料的光谱学分析、显微分析、散射分析、热力学分析以及标记技术等5个方面,并进行了整理、归纳、分类和比较,涵盖了纳米塑料的尺寸、形状、密度、聚合物类型、表面特性、化学指纹以及定量检测等方面。最后,基于现有基础,对现有纳米塑料的检测技术进行了评估和展望,以期为后续研究提供参考。
  • 加载中
  • 马占峰,牛国强,芦珊.中国塑料加工业(2022)[J].中国塑料, 2023, 37(5):110-115.
    LAW K L. Plastics in the marine environment[J]. Annual review of marine science, 2017, 9:205-229.
    ROCHMAN C M, BROWNE M A, HALPERN B S, et al. Classify plastic waste as hazardous[J]. Nature, 2013, 494:169-171.
    杨尚茹,魏群,马湘蒙.水环境中纳米塑料的检测和去除技术研究进展[J].三峡生态环境监测, 2021, 6(4):39-47.

    YANG S R, WEI Q, MA X M. Detection and removal technology of nanoplastics in aquatic environment[J]. Ecology and environmental monitoring of Three Gorges, 2021, 6(4):39-47.

    赵传靓,闫仪,苏俊堂,等.水体环境中纳米塑料的危害与检测研究进展[J].环境工程, 2019, 37(12):64-70.

    ZHAO C L, YAN Y, SU J T, et al. Research progress on the harm and detection technologies of nanoplastics in aquatic environment[J]. Environmental engineering, 2019, 37(12):64-70.

    赵杭美,由文辉,罗扬,等.滨岸缓冲带在河道生态修复中的应用研究[J].环境科学与技术, 2008, 31(4):116-122.

    ZHAO H M, YOU W H, LUO Y, et al. Building riparian buffer for ecological restoration of river banks[J]. Environmental science&technology, 2008, 31(4):116-122.

    MEYNS M, DIETZ F, WEINHOLD C S, et al. Multi-feature round silicon membrane filters enable fractionation and analysis of small micro-and nanoplastics with Raman spectroscopy and nano-FTIR[J]. Analytical methods, 2023, 15(5):606-617.
    YU E S, JEONG E T, LEE S, et al. Real-time underwater nanoplastic detection beyond the diffusion limit and low Raman scattering cross-section via electro-photonic tweezers[J]. ACS nano, 2023, 17(3):2114-2123.
    李珍,孙丽娜,王晓旭,等.基于热裂解气相色谱-质谱技术对农田土壤中纳米塑料的检测方法[J].环境化学, 2024, 43(3):885-894.

    LI Z, SUN L N, WANG X X, et al. Detection method of nanoplastics in farmland soils by pyrolysis-gas chromatography-mass spectrometry[J]. Environmental chemistry, 2024, 43(3):885-894.

    ZAKI M R M, ARIS A Z. An overview of the effects of nanoplastics on marine organisms[J]. Science of the total environment, 2022, 831:154757.
    ZHOU X X, LIU R, HAO L T, et al. Identification of polystyrene nanoplastics using surface enhanced Raman spectroscopy[J]. Talanta, 2021, 221:121552.
    GONÇALVES J M, BEBIANNO M J. Nanoplastics impact on marine biota:a review[J]. Environmental pollution, 2021, 273:116426.
    LV L L, HE L, JIANG S Q, et al. In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments[J]. Science of the total environment, 2020, 728:138449.
    DEL REAL A E P, MITRANO D M, CASTILLO-MICHEL H, et al. Assessing implications of nanoplastics exposure to plants with advanced nanometrology techniques[J]. Journal of hazardous materials, 2022, 430:128356.
    ZHANG Y C, SU X T, TAM N F Y, et al. An insight into aggregation kinetics of polystyrene nanoplastics interaction with metal cations[J]. Chinese chemical letters, 2022, 33(12):5213-5217.
    D[XCA.EPS,SQ][KG*4] BROWSKA A, MIELAN[DD (-2mm][HT6] '[HT5"][][DD)]CZUK M, SYCZEWSKI M. The Raman spectroscopy and SEM/EDS investigation of the primary sources of microplastics from cosmetics available in Poland[J]. Chemosphere, 2022, 308:136407.
    LYU W, TENG H C, WU C C, et al. Anisotropic acoustic phonon polariton-enhanced infrared spectroscopy for single molecule detection[J]. Nanoscale, 2021, 13(29):12720-12726.
    KÄPPLER A, FISCHER D, OBERBECKMANN S, et al. Analysis of environmental microplastics by vibrational microspectroscopy:FTIR, Raman or both?[J]. Analytical and bioanalytical chemistry, 2016, 408(29):8377-8391.
    SOBHANI Z, ZHANG X, GIBSON C, et al. Identification and visualisation of microplastics/nanoplastics by Raman imaging (Ⅰ):down to 100 nm[J]. Water research, 2020, 174:115658.
    CALDWELL J, TALADRIZ-BLANCO P, ROTHEN-RUTISHAUSER B, et al. Detection of sub-micro-and nanoplastic particles on gold nanoparticle-based substrates through surface-enhanced Raman scattering (SERS) spectroscopy[J]. Nanomaterials, 2021, 11(5):1149.
    GILLIBERT R, BALAKRISHNAN G, DESHOULES Q, et al. Raman tweezers for small microplastics and nanoplastics identification in seawater[J]. Environmental science&technology, 2019, 53(15):9003-9013.
    HERNANDEZ L M, XU E G, LARSSON H C E, et al. Plastic teabags release billions of microparticles and nanoparticles into tea[J]. Environmental science&technology, 2019, 53(21):12300-12310.
    LIM D, JEONG J, SONG K S, et al. Inhalation toxicity of polystyrene micro (nano) plastics using modified OECD TG 412[J]. Chemosphere, 2021, 262:128330.
    PEEZ N, JANISKA M C, IMHOF W. The first application of quantitative 1H NMR spectroscopy as a simple and fast method of identification and quantification of microplastic particles (PE, PET, and PS)[J]. Analytical and bioanalytical chemistry, 2019, 411(4):823-833.
    CARR S A, LIU J, TESORO A G. Transport and fate of microplastic particles in wastewater treatment plants[J]. Water research, 2016, 91:174-182.
    SHAN J J, ZHAO J B, ZHANG Y T, et al. Simple and rapid detection of microplastics in seawater using hyperspectral imaging technology[J]. Analytica chimica acta, 2019, 1050:161-168.
    LI G, YANG Z R, PEI Z G, et al. Single-particle analysis of micro/nanoplastics by SEM-Raman technique[J]. Talanta, 2022, 249:123701.
    MAST J, VERLEYSEN E, HODOROABA V D, et al. Chapter 2.1.2 characterization of nanomaterials by transmission electron microscopy:measurement procedures[J]. Characterization of nanoparticles, 2020:29-48.
    LUO Y M, LI L Z, FENG Y D, et al. Quantitative tracing of uptake and transport of submicrometre plastics in crop plants using lanthanide chelates as a dual-functional tracer[J]. Nature nanotechnology, 2022, 17(4):424-431.
    BITLER A, DOVER R S, SHAI Y. Fractal properties of cell surface structures:a view from AFM[J]. Seminars in cell&developmental biology, 2018, 73:64-70.
    LUO H W, XIANG Y H, ZHAO Y Y, et al. Nanoscale infrared, thermal and mechanical properties of aged microplastics revealed by an atomic force microscopy coupled with infrared spectroscopy (AFM-IR) technique[J]. Science of the total environment, 2020, 744:140944.
    FU W Y, MIN J C, JIANG W Y, et al. Separation, characterization and identification of microplastics and nanoplastics in the environment[J]. Science of the total environment, 2020, 721:137561.
    MAGUIRE C M, RÖSSLEIN M, WICK P, et al. Characterisation of particles in solution-a perspective on light scattering and comparative technologies[J]. Science and technology of advanced materials, 2018, 19(1):732-745.
    BATTISTINI B, PETRUCCI F, BOCCA B. In-house validation of AF4-MALS-UV for polystyrene nanoplastic analysis[J]. Analytical and bioanalytical chemistry, 2021, 413(11):3027-3039.
    CHAMIEH J, LECLERCQ L, MARTIN M, et al. Limits in size of Taylor dispersion analysis:representation of the different hydrodynamic regimes and application to the size-characterization of cubosomes[J]. Analytical chemistry, 2017, 89(24):13487-13493.
    RODRÍGUEZ CHIALANZA M, SIERRA I, PÉREZ PARADA A, et al. Identification and quantitation of semi-crystalline microplastics using image analysis and differential scanning calorimetry[J]. Environmental science and pollution research international, 2018, 25(17):16767-16775.
    SULLIVAN G L, GALLARDO J D, JONES E W, et al. Detection of trace sub-micron (nano) plastics in water samples using pyrolysis-gas chromatography time of flight mass spectrometry (PY-GCToF)[J]. Chemosphere, 2020, 249:126179.
    LIN Y, HUANG X, LIU Q, et al. Thermal fragmentation enhanced identification and quantification of polystyrene micro/nanoplastics in complex media[J]. Talanta, 2020, 208:120478.
    MATERIĆ D, KASPER-GIEBL A, KAU D, et al. Micro-and nanoplastics in alpine snow:a new method for chemical identification and (semi) quantification in the nanogram range[J]. Environmental science&technology, 2020, 54(4):2353-2359.
    JIMÉNEZ-LAMANA J, MARIGLIANO L, ALLOUCHE J, et al. A novel strategy for the detection and quantification of nanoplastics by single particle inductively coupled plasma mass spectrometry (ICP-MS)[J]. Analytical chemistry, 2020, 92(17):11664-11672.
    KOVOCHICH M, LIONG M, PARKER J A, et al. Chemical mapping of tire and road wear particles for single particle analysis[J]. Science of the total environment, 2021, 757:144085.
    JUNGNICKEL H, PUND R, TENTSCHERT J, et al. Time-of-flight secondary ion mass spectrometry (ToF-SIMS)-based analysis and imaging of polyethylene microplastics formation during sea surf simulation[J]. Science of the total environment, 2016, 563:261-266.
    MITRANO D M, BELTZUNG A, FREHLAND S, et al. Synthesis of metal-doped nanoplastics and their utility to investigate fate and behaviour in complex environmental systems[J]. Nature nanotechnology, 2019, 14(4):362-368.
    AL-SID-CHEIKH M, ROWLAND S J, STEVENSON K, et al. Uptake, whole-body distribution, and depuration of nanoplastics by the scallop Pecten maximus at environmentally realistic concentrations[J]. Environmental science&technology, 2018, 52(24):14480-14486.
    WU X L, LYU X Y, LI Z Y, et al. Transport of polystyrene nanoplastics in natural soils:effect of soil properties, ionic strength and cation type[J]. Science of the total environment, 2020, 707:136065.
    LU Y F, ZHANG Y, DENG Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver[J]. Environmental science&technology, 2016, 50(7):4054-4060.
  • 加载中
计量
  • 文章访问数:  374
  • HTML全文浏览数:  374
  • PDF下载数:  84
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-08-28
赵震乾, 唐子豪, 巩杨, 童文君, 董小伟, 吴晟旻. 纳米塑料检测技术现状分析及其研究进展[J]. 生态毒理学报, 2025, 20(1): 209-220. doi: 10.7524/AJE.1673-5897.20240828001
引用本文: 赵震乾, 唐子豪, 巩杨, 童文君, 董小伟, 吴晟旻. 纳米塑料检测技术现状分析及其研究进展[J]. 生态毒理学报, 2025, 20(1): 209-220. doi: 10.7524/AJE.1673-5897.20240828001
ZHAO Zhenqian, TANG Zihao, GONG Yang, TONG Wenjun, DONG Xiaowei, WU Shengmin. Current State and Research Progress of Nanoplastics Detection[J]. Asian journal of ecotoxicology, 2025, 20(1): 209-220. doi: 10.7524/AJE.1673-5897.20240828001
Citation: ZHAO Zhenqian, TANG Zihao, GONG Yang, TONG Wenjun, DONG Xiaowei, WU Shengmin. Current State and Research Progress of Nanoplastics Detection[J]. Asian journal of ecotoxicology, 2025, 20(1): 209-220. doi: 10.7524/AJE.1673-5897.20240828001

纳米塑料检测技术现状分析及其研究进展

    通讯作者: 吴晟旻,E-mail:wsm@nies.org
    作者简介: 赵震乾(1991—),男,硕士,助理研究员,研究方向为新污染物治理,E-mail:zhaocug2018@163.com
  • 1. 生态环境部南京环境科学研究所, 南京 210042;
  • 2. 常州大学环境科学与工程学院, 常州 213164
基金项目:

国家重点研发计划课题“生物制造全流程优化设计与绿色量化评价”(2022YFC2105401.2)

摘要: 纳米塑料环境风险已引起广泛关注,发展纳米塑料检测方法对于研究其环境行为与生态效应具有重要意义。本文以2005年以来发表的纳米塑料相关研究文献为基础,对纳米塑料的研究开展了Meta分析。阐述了纳米塑料检测技术的最新研究成果,其中包含纳米塑料的光谱学分析、显微分析、散射分析、热力学分析以及标记技术等5个方面,并进行了整理、归纳、分类和比较,涵盖了纳米塑料的尺寸、形状、密度、聚合物类型、表面特性、化学指纹以及定量检测等方面。最后,基于现有基础,对现有纳米塑料的检测技术进行了评估和展望,以期为后续研究提供参考。

English Abstract

参考文献 (46)

返回顶部

目录

/

返回文章
返回