金属氧化物纳米颗粒诱导肺细胞毒性的机器学习预测模型
Machine Learning Models for Prediction of Toxicity in A549 Cells Induced by Metal Oxide Nanoparticles
-
摘要: 纳米金属氧化物(MOx)易通过呼吸进入肺部,诱发肺细胞毒性,进而导致肺部多种疾病。仅通过实验方法评估毒性面临效率低、成本高和伦理问题等局限性。对MOx的肺部细胞毒性进行全面评估,有利于防治新污染物的健康危害。为了充分利用现有毒性数据,本研究开发了肺细胞(A549细胞)毒性高通量预测模型,对传统毒性实验进行了补充。通过文献挖掘,构建了MOx诱导肺细胞毒性数据集,涵盖9种MOx在8种不同浓度下产生的72个毒性数据点,以及材料密度、粒径等29种性质参数。使用合成少数类过采样技术(SMOTE)算法处理不平衡数据,构建了基于多种机器学习算法的预测模型,表现最优的模型在训练集十折交叉验证和测试集外部验证中准确率分别超过0.90和0.85。基于Shapley可加性特征解释方法(SHAP),识别了暴露浓度、暴露时间以及材料分散指数等影响毒性的5个关键参数,阐明了毒性机理。基于相似性网络图对建模数据的代表性及模型应用域进行了表征。本研究构建的机器学习模型实现了MOx毒性的高通量准确预测,可以作为纳米材料毒性评估和安全设计的有力工具。Abstract: Metal oxide nanoparticles (MOx) can easily enter the lungs through respiration, inducing cytotoxicity in lung cells and subsequently leading to various lung diseases. To address the health hazards of new pollutants, a comprehensive assessment of the toxicity of MOx is crucial. However, evaluating toxicity solely through experimental methods faces limitations such as low efficiency, high costs, and ethical concerns. To fully utilize the existing toxicity data, this study developed a high-throughput predictive model for lung cell toxicity (A549 cells) to complement traditional toxicity experiments. Through literature mining, a dataset was constructed that included 72 toxicity data points induced by 9 types of MOx at 8 different concentrations, along with 29 property parameters such as material density and particle size. The Synthetic Minority Over Sampling Technique (SMOTE) was employed to handle imbalanced data, and predictive models were built using various machine learning algorithms, achieving a prediction accuracy exceeding 0.95 in ten-fold cross-validation on the training set and over 0.85 in external validation on the test set. Using the Shapley Additive Explanations (SHAP) method, five key parameters influencing toxicity were identified, including exposure concentration, exposure time, and material dispersion index, which elucidated the toxicity mechanisms. The representativeness of the modeling data and the applicability domain of the model were characterized using similarity network graphs. The machine learning model established in this study enables high-throughput and accurate predictions of nanotoxicity, serving as a powerful tool for the toxicity assessment and safe design of nanomaterials.
-
Key words:
- nanoparticle /
- predictive model /
- machine learning /
- cytotoxicity /
- lung toxicity
-
-
MATIJEVIć E. Fine particles in medicine and pharmacy[M]. New York:Springer, 2012:57-100. CHAVALI M S, NIKOLOVA M P. Metal oxide nanoparticles and their applications in nanotechnology[J]. SN applied sciences, 2019, 1(6):607. NAVROTSKY A. Thermochemistry of nanomaterials[J]. Reviews in mineralogy and geochemistry, 2001, 44(1):73-103. CAI X, LIU X, JIANG J, et al. Molecular mechanisms, characterization methods, and utilities of nanoparticle biotransformation in nanosafety assessments[J]. Small, 2020, 16(36):1907663. HOLDER A L, GOTH-GOLDSTEIN R, LUCAS D, et al. Particle-induced artifacts in the MTT and LDH viability assays[J]. Chemical research in toxicology, 2012, 25(9):1885-1892. ANDREESCU S, ORNATSKA M, ERLICHMAN J S, et al. Biomedical applications of metal oxide nanoparticles[J]. Fine particles in medicine and pharmacy, 2012, 2012:57-100. YOUNIS S A, EL-FAWAL E M, SERP P. Nano-wastes and the environment:potential challenges and opportunities of nano-waste management paradigm for greener nanotechnologies[J]. Handbook of environmental materials management, 2018:1-72. AHAMED M, AKHTAR M J, ALHADLAQ H A, et al. Assessment of the lung toxicity of copper oxide nanoparticles:current status[J]. Nanomedicine, 2015, 10(15):2365-2377. YAN X, SEDYKH A, WANG W, et al. In silico profiling nanoparticles:predictive nanomodeling using universal nanodescriptors and various machine learning approaches[J]. Nanoscale, 2019, 11(17):8352-8362. GRASSIAN V H, O'SHAUGHNESSY P T, ADAMCAKOVA-DODD A, et al. Inhalation exposure study of titanium dioxide nanoparticles with a primary particle size of 2 to 5 nm[J]. Environmental health perspectives, 2007, 115(3):397-402. ERLICHMAN J S, LEITER J C. Complexity of the nano-bio interface and the tortuous path of metal oxides in biological systems[J]. Antioxidants, 2021, 10(4):547. GOLBAMAKI A, GOLBAMAKI N, SIZOCHENKO N, et al. Genotoxicity induced by metal oxide nanoparticles:a weight of evidence study and effect of particle surface and electronic properties[J]. Nanotoxicology, 2018, 12(10):1113-1129. SHIN H K, KIM K Y, PARK J W, et al. Use of metal/metal oxide spherical cluster and hydroxyl metal coordination complex for descriptor calculation in development of nanoparticle cytotoxicity classification model[J]. SAR and QSAR in environmental research, 2017, 28(11):875-888. PAL A K, BELLO D, COHEN J, et al. Implications of in vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials[J]. Nanotoxicology, 2015, 9(7):871-885. LIU R, LIU H H, JI Z, et al. Evaluation of toxicity ranking for metal oxide nanoparticles via an in vitro dosimetry model[J]. ACS nano, 2015, 9(9):9303-9313. 黄杨,吴雨宣,伍天翔,等.计算毒理学工具解码纳米毒性评估和毒性机理[J].环境化学, 2024.(2024-04-28). https://kns.cnki.net/kcms2 /article/abstract?v=DMKM_QUxZ7BCTazGKhED58GWZZ_5pAF31pxzZQNdLP6w-UBOiyRkjd3rXgGO4cV4BrVbS6ZmQPa5iin0CBdOTtM-YI7MB9pPlphMHz68zKIlGWZuMEzp1F9cHh_OXRktHajEmHgz7FBhMBpC47UYrL_xDxysDwrSZFlEN9UG-93oTLQQ04V3_yU8Nd0Z5oZoKWR&uniplatform=NZKPT&language=CHS. HUANG Y, WU Y X, WU T X, et al. In silico tools in computational toxicology decode risk assessment and mechanism interpretation of nanomaterials[J]. Environmental chemistry, 2024.(2024-04-28). https://kns.cnki.net/kcms2/article/abstract?v=DMKM_QUxZ7BCTaz-GKhED58GWZZ_5pAF31pxzZQNdLP6wUBOiyRkjd3r-XgGO4cV4BrVbS6ZmQPa5iin0CBdOTtMYI7MB9pPlp-hMHz68zKIlGWZuMEzp1F9cHh_OXRktHajEmHgz7FB-hMBpC47UYrL_xDxysDwrSZFlEN9UG93oTLQQ04V3_yU8Nd0Z5oZoKWR&uniplatform=NZKPT&language=CHS.
HALAPPANAVAR S, NYMARK P, KRUG H F, et al. Non-animal strategies for toxicity assessment of nanoscale materials:role of adverse outcome pathways in the selection of endpoints[J]. Small, 2021, 17(15):2007628. WANG Z, CHEN J, HONG H. Developing QSAR models with defined applicability domains on PPARγ binding affinity using large data sets and machine learning algorithms[J]. Environmental science&technology, 2021, 55(10):6857-6866. ZHANG H, JI Z, XIA T, et al. Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation[J]. ACS nano, 2012, 6(5):4349-4368. YU F, WEI C, DENG P, et al. Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles[J]. Science advances, 2021, 7(22):4130. 徐淑君,李瑞香,伍天翔.工程纳米颗粒生物负荷量的机器学习预测模型[J].环境化学, 2024, 43(10):3406-3415. AHMADI S. Mathematical modeling of cytotoxicity of metal oxide nanoparticles using the index of ideality correlation criteria[J]. Chemosphere, 2020, 242:125192. SHARMA M, NIKOTA J, HALAPPANAVAR S, et al. Predicting pulmonary fibrosis in humans after exposure to multi-walled carbon nanotubes (MWCNTs)[J]. Archives of toxicology, 2016, 90(7):1605-1622. SHATKIN J, ONG K. Alternative testing strategies for nanomaterials:state of the science and considerations for risk analysis[J]. Risk analysis, 2016, 36(8):1564-1580. AREECHEEWAKUL S, ADAMCAKOVA-DODD A, GIVENS B E, et al. Toxicity assessment of metal oxide nanomaterials using in vitro screening and murine acute inhalation studies[J]. NanoImpact, 2020, 18:100214. ZAKHAROV A V, PEACH M L, SITZMANN M, et al. QSAR modeling of imbalanced high-throughput screening data in PubChem[J]. Journal of chemical information and modeling, 2014, 54(3):705-712. IDAKWO G, THANGAPANDIAN S, LUTTRELL J, et al. Structure-activity relationship-based chemical classification of highly imbalanced Tox21 datasets[J]. Journal of cheminformatics, 2020, 12(1):1-19. CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE:synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16:321-357. ZHU T, LIN Y, LIU Y. Synthetic minority oversampling technique for multiclass imbalance problems[J]. Pattern recognition, 2017, 72:327-340. HOSMER JR D W, LEMESHOW S, STURDIVANT R X. Applied logistic regression[M]//Wiley Series in probability and statistics. John Wiley&Sons, 2013:153-225. ROY K, KAR S, AMBURE P. On a simple approach for determining applicability domain of QSAR models[J]. Chemometrics and intelligent laboratory systems, 2015, 145:22-29. LI M, SUN H, HUANG Y, et al. Shapley value:from cooperative game to explainable artificial intelligence[J]. Autonomous intelligent systems, 2024, 4(1):2-14. DE ALMEIDA M S, SUSNIK E, DRASLER B, et al. Understanding nanoparticle endocytosis to improve targeting strategies in nanomedicine[J]. Chemical society reviews, 2021, 50(9):5397-5434. KHEDER W, SOUMYA S, SAMSUDIN A. Impact of titanium dioxide particle size on macrophage production of intracellular reactive oxygen species[J]. Archives of oral biology, 2021, 127:105133. KUMARI M, RAJAK S, SINGH S P, et al. Repeated oral dose toxicity of iron oxide nanoparticles:biochemical and histopathological alterations in different tissues of rats[J]. Journal of nanoscience and nanotechnology, 2012, 12(3):2149-2159. PETOSA A R, JAISI D P, QUEVEDO I R, et al. Aggregation and deposition of engineered nanomaterials in aquatic environments:role of physicochemical interactions[J]. Environmental science&technology, 2010, 44(17):6532-6549. GEVARIYA D, PRIYA L, MEHTA S, et al. Bio-functional mesoporous silica nanoparticles as nano-structured carriers in cancer theranostic review on recent advancements[J]. Current drug targets, 2023, 24(12):934-944. 肖九逸.具有降低毒性的介孔二氧化硅纳米棒用于精确癌症治疗[J].科学, 2017, 69(6):21-29. XIAO J Y. Mesoporous silica nanorods with reduced toxicity for precise cancer treatment[J]. Science, 2017, 69(6):21.
HUANG Y, LI X, CAO J, et al. Use of dissociation degree in lysosomes to predict metal oxide nanoparticle toxicity in immune cells:machine learning boosts nano-safety assessment[J]. Environment international, 2022, 164:107258. -

计量
- 文章访问数: 331
- HTML全文浏览数: 331
- PDF下载数: 94
- 施引文献: 0