基于Keap1/Nrf2与TLR4/NF-κB信号通路研究啶虫脒暴露对斑马鱼的免疫毒性及机制

李丹, 李晓, 程云硕, 茆广华, 吴向阳. 基于Keap1/Nrf2与TLR4/NF-κB信号通路研究啶虫脒暴露对斑马鱼的免疫毒性及机制[J]. 生态毒理学报, 2025, 20(1): 36-47. doi: 10.7524/AJE.1673-5897.20241016001
引用本文: 李丹, 李晓, 程云硕, 茆广华, 吴向阳. 基于Keap1/Nrf2与TLR4/NF-κB信号通路研究啶虫脒暴露对斑马鱼的免疫毒性及机制[J]. 生态毒理学报, 2025, 20(1): 36-47. doi: 10.7524/AJE.1673-5897.20241016001
LI Dan, LI Xiao, CHENG Yunshuo, MAO Guanghua, WU Xiangyang. Exploring the Immunotoxicity and Mechanisms of Acetamiprid Exposure in Zebrafish Based on the Keap1/Nrf2 and TLR4/NF-κB Signaling Pathways[J]. Asian journal of ecotoxicology, 2025, 20(1): 36-47. doi: 10.7524/AJE.1673-5897.20241016001
Citation: LI Dan, LI Xiao, CHENG Yunshuo, MAO Guanghua, WU Xiangyang. Exploring the Immunotoxicity and Mechanisms of Acetamiprid Exposure in Zebrafish Based on the Keap1/Nrf2 and TLR4/NF-κB Signaling Pathways[J]. Asian journal of ecotoxicology, 2025, 20(1): 36-47. doi: 10.7524/AJE.1673-5897.20241016001

基于Keap1/Nrf2与TLR4/NF-κB信号通路研究啶虫脒暴露对斑马鱼的免疫毒性及机制

    作者简介: 李丹(1999—),女,硕士研究生,研究方向为环境毒理学,E-mail:2607612874@qq.com
    通讯作者: 茆广华,E-mail:maoyun82@sina.com;  吴向阳,E-mail:wuxy@ujs.edu.cn
  • 基金项目:

    国家自然科学基金面上项目(8111370014)

    江苏大学应急管理专项项目(KY-C-10)

  • 中图分类号: X171.5

Exploring the Immunotoxicity and Mechanisms of Acetamiprid Exposure in Zebrafish Based on the Keap1/Nrf2 and TLR4/NF-κB Signaling Pathways

    Corresponding authors: MAO Guanghua ;  WU Xiangyang
  • Fund Project:
  • 摘要: 为探究环境浓度啶虫脒(ACE)暴露对斑马鱼仔鱼的免疫毒性及作用机制,将5 dpf的斑马鱼仔鱼暴露在不同浓度的ACE溶液中,于10 dpf分析ACE暴露对斑马鱼仔鱼氧化应激水平、先天和适应免疫细胞、免疫相关参数及基因转录水平的影响。结果表明,ACE暴露导致仔鱼体内活性氧(ROS)的蓄积和抗氧化酶(包括超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶)活性的抑制;先天免疫细胞(巨噬细胞和中性粒细胞)数量和胸腺T细胞的面积显著减少;免疫相关参数中溶菌酶(LYS)的含量降低,一氧化氮(NO)、诱导型一氧化氮合酶(iNOS)和免疫球蛋白M (IgM)的分泌量则显著升高。机制研究发现,ACE暴露可通过抑制Nrf2-Keap1通路,导致ROS的累积,从而引起机体氧化应激;可通过激活TLR4/NF-κB通路,诱导TNF-α、IL-6和IL-1β分泌,从而引起炎症反应。综上所述,环境浓度啶虫脒暴露对斑马鱼仔鱼的抗氧化防御系统和免疫系统造成了显著损害,这一过程可能与TLR4/NF-κB和Nrf2-Keap1信号通路相关。
  • 加载中
  • 李田田,郑珊珊,王晶,等.新烟碱类农药的污染现状及转化行为研究进展[J].生态毒理学报, 2018, 13(4):9-21.

    LI T T, ZHENG S S, WANG J, et al. A review on occurrence and transformation behaviors of neonicotinoid pesticides[J]. Asian journal of ecotoxicology, 2018, 13(4):9-21.

    CHEN H, YANG Y, AI L N, et al. Bioconcentration, oxidative stress and molecular mechanism of the toxic effect of acetamiprid exposure on Xenopus laevis tadpoles[J]. Aquatic toxicology, 2024, 272:106965.
    ZHU H M, ZHANG X Q, LI C J, et al. Photochemical degradation of the new nicotine pesticide acetamiprid in water[J]. Bulletin of environmental contamination and toxicology, 2024, 112(4):62.
    ANDERSON T A, SALICE C J, ERICKSON R A, et al. Effects of landuse and precipitation on pesticides and water quality in Playa Lakes of the southern high plains[J]. Chemosphere, 2013, 92(1):84-90.
    HLADIK M L, BRADBURY S, SCHULTE L A, et al. Neonicotinoid insecticide removal by prairie strips in row-cropped watersheds with historical seed coating use[J]. Agriculture, ecosystems&environment, 2017, 241:160-167.
    QIN R H, WEI Z Y, HUANG Y Y, et al. Large geographical scale study on the concentrations, distribution, and source analysis of neonicotinoid insecticides in surface waters of South China[J]. ACS ES&T Water, 2024, 4(1):68-78
    HU G X, WANG H, SHI H Y, et al. Mixture toxicity of cadmium and acetamiprid to the early life stages of zebrafish (Danio rerio)[J]. Chemico-biological interactions, 2022, 366:110150.
    SALIH A M, PATRA I, SIVARAMAN R, et al. The probiotic Lactobacillus sakei subsp. Sakei and hawthorn extract supplements improved growth performance, digestive enzymes, immunity, and resistance to the pesticide acetamiprid in common carp (Cyprinus carpio)[J]. Aquaculture nutrition, 2023, 2023:8506738.
    MA X, LI H Z, XIONG J J, et al. Developmental toxicity of a neonicotinoid insecticide, acetamiprid to zebrafish embryos[J]. Journal of agricultural and food chemistry, 2019, 67(9):2429-2436.
    MA X, XIONG J J, LI H Z, et al. Long-term exposure to neonicotinoid insecticide acetamiprid at environmentally relevant concentrations impairs endocrine functions in zebrafish:bioaccumulation, feminization, and transgenerational effects[J]. Environmental science&technology, 2022, 56(17):12494-12505.
    VON HELLFELD R, OVCHAROVA V, BEVAN S, et al. Zebrafish embryo neonicotinoid developmental neurotoxicity in the FET test and behavioral assays[J]. ALTEX, 2022, 39(3):367-387.
    YODER J A, NIELSEN M E, AMEMIYA C T, et al. Zebrafish as an immunological model system[J]. Microbes and infection, 2002, 4(14):1469-1478.
    Organization for Economic Co-operation and Development (OECD). Test No. 236:fish embryo acute toxicity (FET) test, OECD guidelines for the testing of chemicals, section 2[R]. Paris:OECD, 2013:1-22.
    LIU W, ZHANG J Y, LIANG X F, et al. Environmental concentrations of 2,4-DTBP cause immunotoxicity in zebrafish (Danio rerio) and may elicit ecological risk to wildlife[J]. Chemosphere, 2022, 308:136465.
    ZUŠ[AKČ]ÍKOVÁ L, BAŽÁNY D, GREIFOVÁ H, et al. Screening of toxic effects of neonicotinoid insecticides with a focus on acetamiprid:a review[J]. Toxics, 2023, 11(7):598.
    LICHT K, KOSAR V, TOMAŠI[AKČ] V, et al. Removal of the neonicotinoid insecticide acetamiprid from wastewater using heterogeneous photocatalysis[J]. Environmental technology, 2023, 44(8):1125-1134.
    YANG C, LIM W, SONG G. Immunotoxicological effects of insecticides in exposed fishes[J]. Comparative biochemistry and physiology toxicology&pharmacology, 2021, 247:109064.
    SUN H J, ZHANG Y, ZHANG J Y, et al. The toxicity of 2,6-dichlorobenzoquinone on the early life stage of zebrafish:a survey on the endpoints at developmental toxicity, oxidative stress, genotoxicity and cytotoxicity[J]. Environmental pollution, 2019, 245:719-724.
    WEI J J, ZHOU T, HU Z Y, et al. Effects of triclocarban on oxidative stress and innate immune response in zebrafish embryos[J]. Chemosphere, 2018, 210:93-101.
    IGHODARO O M, AKINLOYE O A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX):their fundamental role in the entire antioxidant defence grid[J]. Alexandria journal of medicine, 2018, 54(4):287-293.
    LIANG X M, WANG F, LI K B, et al. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio):developmental toxicity, oxidative stress and immunotoxicity[J]. Fish&shellfish immunology, 2020, 96:262-269.
    PEREIRA T C B, CAMPOS M M, BOGO M R. Copper toxicology, oxidative stress and inflammation using zebrafish as experimental model[J]. Journal of applied toxicology, 2016, 36(7):876-885.
    LI Z X, LI M G, LI D, et al. A review of cumulative toxic effects of environmental endocrine disruptors on the zebrafish immune system:characterization methods, toxic effects and mechanisms[J]. Environmental research, 2024, 246:118010.
    ZHENG J L, YUAN S S, WU C W, et al. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio)[J]. Aquatic toxicology, 2016, 180:36-44.
    QIU W H, SHAO H Y, LEI P H, et al. Immunotoxicity of bisphenol S and F are similar to that of bisphenol A during zebrafish early development[J]. Chemosphere, 2018, 194:1-8.
    EGGESTØL HØ, LUNDE H S, HAUGLAND G T. The proinflammatory cytokines TNF-α[WT《Times New Roman》] and IL-6 in lumpfish (Cyclopterus lumpus L.)-Identification, molecular characterization, phylogeny and gene expression analyses[J]. Developmental&comparative immunology, 2020, 105:103608.
    ZHANG C N, ZHANG J L, REN H T, et al. Effect of tributyltin on antioxidant ability and immune responses of zebrafish (Danio rerio)[J]. Ecotoxicology and environmental safety, 2017, 138:1-8.
    PENG Y Y, LI M, HUANG Y, et al. Bifenazate induces developmental and immunotoxicity in zebrafish[J]. Chemosphere, 2021, 271:129457.
    况宇,何亚,欧阳康,等.氨氮和微囊藻毒素-LR联合作用对斑马鱼肠道免疫和菌群的影响[J].生态毒理学报, 2024, 19(3):287-305.

    KUANG Y, HE Y, OUYANG K, et al. Effects of combined exposure to ammonia and microcystin-LR on intestinal immunity and microbial community in zebrafish (Danio rerio)[J]. Asian journal of ecotoxicology, 2024, 19(3):287-305.

    WANG H, TANG W, ZHANG R, et al. Analysis of enzyme activity, antibacterial activity, antiparasitic activity and physico-chemical stability of skin mucus derived from Amphiprion clarkii[J]. Fish&shellfish immunology, 2019, 86:653-661.
    FU Y W, ZHU C K, ZHANG Q Z. Molecular characterization and expression analysis of complement components C3 and C9 in largemouth bronze gudgeon (Coreius guichenoti) in response to Ichthyophthirius multifiliis infection[J]. Aquaculture, 2019, 506:270-279.
    HOU T L, LIU H R, LI C T. Traditional Chinese herb formulas in diet enhance the non-specific immune responses of yellow catfish (Pelteobagrus fulvidraco) and resistance against Aeromonas hydrophila[J]. Fish&shellfish immunology, 2022, 131:631-636.
    田海军,姜汉军,杨铁柱,等.十二烷基苯磺酸钠对黄颡鱼免疫相关酶活性的影响[J].水产学杂志, 2024, 37(2):55-60.

    TIAN H J, JIANG H J, YANG T Z, et al. Immunotoxicity of sodium dodecyl benzene sulfonate exposure in water to yellow catfish Pelteobagrus fulvidraco[J]. Chinese journal of fisheries, 2024, 37(2):55-60.

    REHBERGER K, WERNER I, HITZFELD B, et al. 20 years of fish immunotoxicology-What we know and where we are[J]. Critical reviews in toxicology, 2017, 47(6):509-535.
    GARCÍA-MORENO D, TYRKALSKA S D, VALERA-PÉREZ A, et al. The zebrafish:a research model to understand the evolution of vertebrate immunity[J]. Fish&shellfish immunology, 2019, 90:215-222.
    LIU Y, GUO J, LIU W J, et al. Effects of haloxyfop-p-methyl on the developmental toxicity, neurotoxicity, and immunotoxicity in zebrafish[J]. Fish&shellfish immunology, 2023, 132:108466.
    SEGNER H, WENGER M, MÖLLER A M, et al. Immunotoxic effects of environmental toxicants in fish-How to assess them?[J]. Environmental science and pollution research, 2012, 19(7):2465-2476.
    KERNEN L, PHAN A, BO J, et al. Estrogens as immunotoxicants:17α-ethinylestradiol exposure retards thymus development in zebrafish (Danio rerio)[J]. Aquatic toxicology, 2022, 242:106025.
    LI X, WANG W W, WANG X D, et al. Differential immunotoxicity effects of triclosan and triclocarban on larval zebrafish based on RNA-Seq and bioinformatics analysis[J]. Aquatic toxicology, 2023, 262:106665.
    窦曙光,刘成栋,王旋,等.饲料中添加不同脂肪酸对大菱鲆幼鱼生长、脂代谢和非特异性免疫的影响[J].水生生物学报, 2024, 48(8):1267-1278.

    DOU S G, LIU C D, WANG X, et al. Dietary supplementation of different fatty acids on growth, lipid metabolism and non-specific immunity of turbot (Scophthalmus maximus L.)[J]. Acta hydrobiologica sinica, 2024, 48(8):1267-1278.

    MUKHERJEE S, KARMAKAR S, BABU S P S. TLR2 and TLR4 mediated host immune responses in major infectious diseases:a review[J]. The Brazilian journal of infectious diseases, 2016, 20(2):193-204.
    WANG K X, HUANG Y, CHENG B, et al. Sulfoxaflor induces immunotoxicity in zebrafish (Danio rerio) by activating TLR4/NF-κ[WT《Times New Roman》]B signaling pathway[J]. Fish&shellfish immunology, 2023, 137:108743.
    蔡荣,郭赛男,郑家浪. Cd2+暴露对斑马鱼肝脏和卵巢抗氧化和免疫系统的影响及蓝LED光预暴露的保护作用[J].生态毒理学报, 2018, 13(1):169-178.

    CAI R, GUO S N, ZHENG J L. Effect of cadmium exposure on antioxidant and immune responses and the ameliorative role of blue LEDs pre-exposure in the liver and ovary of zebrafish[J]. Asian journal of ecotoxicology, 2018, 13(1):169-178.

    刘道忠,冯佳,刘义,等.基于Keap1/Nrf2信号通路探讨苗药痛风方对痛风性关节炎大鼠的作用机制[J].中国病理生理杂志, 2024, 40(8):1505-1510.

    LIU D Z, FENG J, LIU Y, et al. Effect of Miaoyao Tongfeng prescription on Keap1/Nrf2 signaling pathway in gouty arthritis rats[J]. Chinese journal of pathophysiology, 2024, 40(8):1505-1510.

    李昊阳,钟荣珍,房义,等.动物氧化应激与免疫的研究进展[J].动物营养学报, 2014, 26(11):3217-3221.

    LI H Y, ZHONG R Z, FANG Y, et al. Research progress on oxidative stress and immunity of animals[J]. Chinese journal of animal nutrition, 2014, 26(11):3217-3221.

  • 加载中
计量
  • 文章访问数:  307
  • HTML全文浏览数:  307
  • PDF下载数:  79
  • 施引文献:  0
出版历程
  • 收稿日期:  2024-10-16
李丹, 李晓, 程云硕, 茆广华, 吴向阳. 基于Keap1/Nrf2与TLR4/NF-κB信号通路研究啶虫脒暴露对斑马鱼的免疫毒性及机制[J]. 生态毒理学报, 2025, 20(1): 36-47. doi: 10.7524/AJE.1673-5897.20241016001
引用本文: 李丹, 李晓, 程云硕, 茆广华, 吴向阳. 基于Keap1/Nrf2与TLR4/NF-κB信号通路研究啶虫脒暴露对斑马鱼的免疫毒性及机制[J]. 生态毒理学报, 2025, 20(1): 36-47. doi: 10.7524/AJE.1673-5897.20241016001
LI Dan, LI Xiao, CHENG Yunshuo, MAO Guanghua, WU Xiangyang. Exploring the Immunotoxicity and Mechanisms of Acetamiprid Exposure in Zebrafish Based on the Keap1/Nrf2 and TLR4/NF-κB Signaling Pathways[J]. Asian journal of ecotoxicology, 2025, 20(1): 36-47. doi: 10.7524/AJE.1673-5897.20241016001
Citation: LI Dan, LI Xiao, CHENG Yunshuo, MAO Guanghua, WU Xiangyang. Exploring the Immunotoxicity and Mechanisms of Acetamiprid Exposure in Zebrafish Based on the Keap1/Nrf2 and TLR4/NF-κB Signaling Pathways[J]. Asian journal of ecotoxicology, 2025, 20(1): 36-47. doi: 10.7524/AJE.1673-5897.20241016001

基于Keap1/Nrf2与TLR4/NF-κB信号通路研究啶虫脒暴露对斑马鱼的免疫毒性及机制

    通讯作者: 茆广华,E-mail:maoyun82@sina.com;  吴向阳,E-mail:wuxy@ujs.edu.cn
    作者简介: 李丹(1999—),女,硕士研究生,研究方向为环境毒理学,E-mail:2607612874@qq.com
  • 江苏大学环境与安全工程学院, 镇江 212013
基金项目:

国家自然科学基金面上项目(8111370014)

江苏大学应急管理专项项目(KY-C-10)

摘要: 为探究环境浓度啶虫脒(ACE)暴露对斑马鱼仔鱼的免疫毒性及作用机制,将5 dpf的斑马鱼仔鱼暴露在不同浓度的ACE溶液中,于10 dpf分析ACE暴露对斑马鱼仔鱼氧化应激水平、先天和适应免疫细胞、免疫相关参数及基因转录水平的影响。结果表明,ACE暴露导致仔鱼体内活性氧(ROS)的蓄积和抗氧化酶(包括超氧化物歧化酶、过氧化氢酶和谷胱甘肽过氧化物酶)活性的抑制;先天免疫细胞(巨噬细胞和中性粒细胞)数量和胸腺T细胞的面积显著减少;免疫相关参数中溶菌酶(LYS)的含量降低,一氧化氮(NO)、诱导型一氧化氮合酶(iNOS)和免疫球蛋白M (IgM)的分泌量则显著升高。机制研究发现,ACE暴露可通过抑制Nrf2-Keap1通路,导致ROS的累积,从而引起机体氧化应激;可通过激活TLR4/NF-κB通路,诱导TNF-α、IL-6和IL-1β分泌,从而引起炎症反应。综上所述,环境浓度啶虫脒暴露对斑马鱼仔鱼的抗氧化防御系统和免疫系统造成了显著损害,这一过程可能与TLR4/NF-κB和Nrf2-Keap1信号通路相关。

English Abstract

参考文献 (45)

返回顶部

目录

/

返回文章
返回