铁基金属有机骨架对中华青鳉毒性作用的持续性与恢复性
Persistence and Recovery of Toxicity Induced by Iron-Based Metal-Organic Framework to Chinese Medaka (Oryzias sinensis)
-
摘要: 铁基金属有机骨架(Fe-MOFs)在环境治理和修复领域展现出广泛的应用前景。然而,在Fe-MOFs合成、应用及处置等过程中,不可避免地会释放到水环境中,对生态系统和生物体造成潜在毒害作用。目前,关于Fe-MOFs生态毒性效应的研究仍较为有限。以中华青鳉(Oryzias sinensis)作为实验对象,探究了一种典型Fe-MOF(MIL-88B(Fe))对中华青鳉的毒性持久性和恢复性效应。实验将中华青鳉在0.4 mg·L-1的Fe-MOFs中胁迫14 d,随后进行14 d恢复阶段的观察。转录组学分析表明,在暴露阶段,Fe-MOFs显著影响了鱼体内核糖体功能、碳代谢、内质网蛋白质加工、糖酵解/糖异生以及丙酮酸代谢等关键生物学过程。在恢复阶段,神经活性配体-受体相互作用、cAMP信号通路、不饱和脂肪酸的生物合成和谷氨酸突触的破坏与Fe-MOFs诱导的毒性持久性密切相关。这些发现有助于揭示Fe-MOFs在鱼体内毒性效应的持续性及其恢复机制,对评估其生态环境风险具有重要的意义。Abstract: Iron-based metal-organic frameworks (Fe-MOFs) have garnered significant attention for their diverse applications in environmental fields. However, the increasing applications of Fe-MOFs raise concerns about their potential risks to living organisms. Nevertheless, the persistence and recovery of their toxicity remains largely unknown. Herein, two sub-experiments (exposure and recovery experiments) were conducted to reveal the persistence of the toxicity of a representative Fe-MOF, MIL-88B(Fe), to Chinese medaka (Oryzias sinensis). Oryzias sinensis were exposed to 0.4 mg·L-1 Fe-MOFs for 14 days. Transcriptome sequencing was employed to investigate the molecular responses of Oryzias sinensis during Fe-MOFs exposure and after recovery. During the exposure stage, Fe-MOFs significantly altered ribosome, carbon metabolism, protein processing in endoplasmic reticulum, glycolysis/gluconeogenesis, and pyruvate metabolism at exposure stage. In the recovery stage, disruption of neuroactive ligand-receptor interaction, cAMP signaling pathway, biosynthesis of unsaturated fatty acids, and glutamatergic synapse was linked to the persistence of Fe-MOFs induced toxicity. These findings highlight the mechanisms underlying the persistence of Fe-MOFs induced toxicity and provide critical insights for the accurate ecological risk assessment of Fe-MOFs.
-
Key words:
- iron-based metal-organic framework /
- Chinese medaka /
- ecotoxicity /
- transcriptome /
- recovery /
- persistence
-
-
吕雅茹, 翟雪静, 王珊, 等. 单源MOF衍生具有三维有序大孔结构的氮掺杂碳包覆铁-氮合金复合材料用于高效氧还原[J]. 催化学报, 2021, 42(3): 490-500. LYU Y R, ZHAI X J, WANG S, et al. 3D-ordered macroporous N-doped carbon encapsulating Fe-N alloy derived from a single-source metal-organic framework for superior oxygen reduction reaction[J]. Chinese journal of catalysis, 2021, 42(3): 490-500.
周颖. 铁、铜双节点金属有机骨架合成及光催化降解罗丹明B机制研究[J]. 当代化工, 2020, 49(12): 2718-2722. ZHOU Y. Study on synthesis of iron-copper tow-node metal organic framework and mechanism of photodegrading rhodamine B[J]. Contemporary chemical industry, 2020, 49(12): 2718-2722.
江涛, 梁晓彤, 廖思燕, 等. 基于5-氨基烟酸的锰金属有机框架的合成、结构及荧光传感性质[J]. 人工晶体学报, 2024, 53(2): 307-314. JIANG T, LIANG X T, LIAO S Y, et al. Synthesis, structure and fluorescence sensing property of manganese metal-organic framework based on 5-aminonicotinic acid[J]. Journal of synthetic crystals, 2024, 53(2): 307-314.
林小英, 郑琴琴, 裴义山, 等. 金属-有机骨架K-MOF的合成及性质表征[J]. 福建工程学院学报, 2017, 15(1): 1-4. LIN X Y, ZHENG Q Q, PEI Y S, et al. Syntheses and characterization of metal-organic framework K-MOF[J]. Journal of Fujian University of technology, 2017, 15(1): 1-4.
SONG S Z, ZHENG T F, LI B, et al. Soft actuators based on the flexible MOF MIL-88B(Fe) with a fast response to various organic solvent vapours[J]. Journal of materials chemistry C, 2024, 12(15): 5517-5528. SONG G Q, WANG Z Q, WANG L, et al. Preparation of MOF(Fe) and its catalytic activity for oxygen reduction reaction in an alkaline electrolyte[J]. Chinese journal of catalysis, 2014, 35(2): 185-195. GUILLEN S G, PARRES-GOLD J, RUIZ A, et al. pH-responsive metal-organic framework thin film for drug delivery[J]. Langmuir, 2022, 38(51): 16014-16023. DAWOOD S, SHAJI S, PATHIRAJA G, et al. Molecular magnetism in nanodomains of isoreticular MIL-88(Fe)-MOFs[J]. Physical chemistry chemical physics, 2021, 23(38): 21677-21689. TRAN L T, DANG H T M, TRAN H V, et al. MIL-88B(Fe)-NH2: an amine-functionalized metal-organic framework for application in a sensitive electrochemical sensor for Cd2+, Pb2+, and Cu2+ ion detection[J]. RSC advances, 2023, 13(32): 21861-21872. MCKINLAY A C, EUBANK J F, WUTTKE S, et al. Nitric oxide adsorption and delivery in flexible MIL-88(Fe) metal-organic frameworks[J]. Chemistry of materials, 2013, 25(9): 1592-1599. XIAO Y L, GUO X Y, HUANG H L, et al. Synthesis of MIL-88B(Fe)/matrimid mixed-matrix membranes with high hydrogen permselectivity[J]. RSC advances, 2015, 5(10): 7253-7259. LI Y L, LI C S, LIU S, et al. Nano-photosensitizers with gallic acid-involved Fe-O-Cu “electronic storage station” bridging ligand-to-metal charge transfer for efficient catalytic theranostics[J]. Journal of colloid and interface science, 2024, 676: 974-988. LIU C Z, YU Y, ZHANG X F, et al. Construction of Ti3C2Tx templated MIL-88b(Fe) based heterojunction for enhanced photocatalytic degradation of organic pollutant: the influence of surface chemical states[J]. Journal of water process engineering, 2025, 69: 106857. LONG R X, YU Z X, TAN Q Y, et al. Ti3C2 MXene/NH2-MIL-88B(Fe): research on the adsorption kinetics and photocatalytic performance of an efficient integrated photocatalytic adsorbent[J]. Applied surface science, 2021, 570: 151244. LIN Y S, LIN K S. Characterization of the size and porous temperature sensitivity of PluronicF127-coated MIL-88B(Fe) for drug release[J]. Microporous and mesoporous materials, 2021, 328: 111456. LI H Y, DAI L, HUANG Q Y, et al. FeNi-MIL-88B-based electrochemiluminescence immunosensor for ultra-sensitive detection of CD44 protein via dual-quenching strategy[J]. Analytica chimica acta, 2024, 1303: 342520. WU Y N, FANG Y, FU J R, et al. Optimized scalable synthesis and granulation of MIL-88B(Fe) for efficient arsenate removal[J]. Journal of environmental chemical engineering, 2022, 10(6): 108556. CHANNAB B E, EL OUARDI M, AIT LAYACHI O, et al. Recent trends on MIL-Fe metal-organic frameworks: synthesis approaches, structural insights, and applications in organic pollutant adsorption and photocatalytic degradation[J]. Environmental science: nano, 2023, 10(11): 2957-2988. JING Y, JIA M Y, XU Z Y, et al. Facile synthesis of recyclable 3D gelatin aerogel decorated with MIL-88B(Fe) for activation peroxydisulfate degradation of norfloxacin[J]. Journal of hazardous materials, 2022, 424: 127503. HIDALGO T, SIMÓN-VÁZQUEZ R, GONZÁLEZ-FERNÁNDEZ A, et al. Cracking the immune fingerprint of metal-organic frameworks[J]. Chemical science, 2022, 13(4): 934-944. WUTTKE S, ZIMPEL A, BEIN T, et al. Validating metal-organic framework nanoparticles for their nanosafety in diverse biomedical applications[J]. Advanced healthcare materials, 2017, 6(2): 1600818. TAMAMES-TABAR C, CUNHA D, IMBULUZQUETA E, et al. Cytotoxicity of nanoscaled metal-organic frameworks[J]. Journal of materials chemistry B, 2014, 2(3): 262-271. HORCAJADA P, CHALATI T, SERRE C, et al.Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging[J]. Nature materials, 2010, 9(2): 172-178. YANG L P, CHEN H Y, KAZIEM A E, et al. Effects of exposure to different types of metal-organic framework nanoparticles on the gut microbiota and liver metabolism of adult zebrafish[J]. ACS nano, 2024, 18(37): 25425-25445. CUI L, FAN M, BELANGER S, et al. Oryzias sinensis, a new model organism in the application of eco-toxicity and water quality criteria (WQC)[J]. Chemosphere, 2020, 261: 127813. 吕钧惠, 王悦, 周蕾, 等. 雌二醇暴露中国青鳉原代肝细胞转录组分析[J]. 生态毒理学报, 2020, 15(5): 118-127. LYU J H, WANG Y, ZHOU L, et al. Transcriptome analysis of Oryzias sinensis primary hepatocytes under the exposure of estradiol[J]. Asian journal of ecotoxicology, 2020, 15(5): 118-127.
姜东生. 典型污染物对淡水生物的急性毒性及我国林丹水质基准研究[D]. 南京: 南京大学, 2014: 45-47. XU B, YANG H, CAI Y, et al. Preparation and photocatalytic property of spindle-like MIL-88B(Fe) nanoparticles[J]. Inorganic chemistry communications, 2016, 67: 29-31. GUASCH-FERRÉ M, SANTOS J L, MARTÍNEZ-GONZÁLEZ M A, et al. Glycolysis/gluconeogenesis- and tricarboxylic acid cycle-related metabolites, Mediterranean diet, and type 2 diabetes[J]. The American journal of clinical nutrition, 2020, 111(4): 835-844. WAN Z Q, WANG C Y, ZHOU J J, et al. Effects of polystyrene microplastics on the composition of the microbiome and metabolism in larval zebrafish[J]. Chemosphere, 2019, 217: 646-658. WANG L, WANG J Q, LIU Y, et al. Metabolic responses of small yellow croaker (Larimichthys polyactis) liver to hypoxic stress: insights into glucose and lipid metabolism[J]. Aquaculture, 2025, 598: 742015. LIANG Y S, WU R X, NIU S F, et al. Liver transcriptome analysis reveals changes in energy metabolism, oxidative stress, and apoptosis in pearl gentian grouper exposed to acute hypoxia[J]. Aquaculture, 2022, 561: 738635. 张杏丽, 史菁, 赵静宜, 等. 环境浓度微塑料增强TDCIPP肝脏毒性及其分子响应机制[J]. 生态毒理学报, 2023, 18(4): 384-400 ZHANG X L, SHI J, ZHAO J Y, et al. Promotion effects and molecular response mechanism of polyamide microplastics on hepatotoxicity of TDCIPP at environmental concentration[J]. Asian journal of ecotoxicology, 2023, 18(4): 384-400.
WU Q, LIU T, LIU H, et al. Unsaturated fatty acid: metabolism, synthesis and gene regulation[J]. African journal of biotechnology, 2009, 8(9): 1782-1785. 龙勇, 葛国栋, 李西西, 等. 鱼类低温应激反应的调控机制[J]. 水生生物学报, 2021, 45(6): 1405-1414. LONG Y, GE G D, LI X X, et al. Regulation mechanisms for cold stress responses of fish[J]. Acta hydrobiologica sinica, 2021, 45(6): 1405-1414.
曾霖, 王永红, 宋炜, 等. 基于转录组解析铜驯化对低温胁迫下大黄鱼氧化损伤的影响[J]. 中国水产科学, 2022, 29(10): 1425-1436. ZENG L, WANG Y H, SONG W, et al. Effects of Cu acclimation on oxidative damage in the large yellow croaker under cold stress based on transcriptome analysis[J]. Journal of fishery sciences of China, 2022, 29(10): 1425-1436.
MARTIN-DIAZ L, FRANZELLITTI S, BURATTI S, et al. Effects of environmental concentrations of the antiepilectic drug carbamazepine on biomarkers and cAMP-mediated cell signaling in the mussel Mytilus galloprovincialis[J]. Aquatic toxicology, 2009, 94(3): 177-185. FRANZELLITTI S, FABBRI E. Cyclic-AMP mediated regulation of ABCB mRNA expression in mussel haemocytes[J]. PLoS One, 2013, 8(4): e61634. WU H Y, ZHANG Q R, DONG C F, et al. Coordination regulation of enhanced performance reveals the tolerance mechanism of Chlamys farreri to azaspiracid toxicity[J]. Journal of hazardous materials, 2024, 476: 135247. 赵艳民, 王洪盼, 温泉, 等. 铜在日本青鳉体内的累积特征及其对肝脏组织结构的影响[J]. 生态毒理学报, 2016, 11(1): 323-328. [WT《Times New Roman》]ZHAO Y M, WANG H P, WEN Q, et al. Accumulation characteristic of Cu(Ⅱ) in Oryzias latipes and its effect on liver histology structure[J]. Asian journal of ecotoxicology, 2016, 11(1): 323-328.
-

计量
- 文章访问数: 114
- HTML全文浏览数: 114
- PDF下载数: 47
- 施引文献: 0